scholarly journals Evolution of Physico-Chemical Properties, Microbial Biomass and Microbial Activity of an Urban Soil after De-Sealing

Agriculture ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 596
Author(s):  
Giancarlo Renella

Recovery of soil fertility after de-sealing of urban soils is still poorly known. This work studied the time-related dynamics of soil physico-chemical and biochemical endpoints of urban soil in the city in Naples (Southern Italy), de-sealed for different time during construction works, that underwent colonization by volunteer plants. The results showed de-sealing decreased the soil bulk density and the soil pH value, increased the electrical conductivity (EC), total organic C (TOC) and extractable carbohydrates (TEC), total and inorganic N contents, soil basal respiration (SBR), soil microbial biomass C (MBC) and soil microbial biomass N (MBN), the substrate induced respiration (SIR) value, and enzyme activities involved in C, N, P and S mineralization. The TEC, total and inorganic N, SBR and microbial biochemical endpoints were higher in the de-sealed soils than those of an arable soil of the same area. The results show that de-sealed urban soils rapidly increase their physical, chemical and biological fertility even with no intervention, especially when they are colonized by volunteer plants.

1998 ◽  
Vol 78 (2) ◽  
pp. 283-290 ◽  
Author(s):  
P. Rochette ◽  
E. G. Gregorich

Application of manure and fertilizer affects the rate and extent of mineralization and sequestration of C in soil. The objective of this study was to determine the effects of 3 yr of application of N fertilizer and different manure amendments on CO2 evolution and the dynamics of soil microbial biomass and soluble C in the field. Soil respiration, soluble organic C and microbial biomass C were measured at intervals over the growing season in maize soils amended with stockpiled or rotted manure, N fertilizer (200 kg N ha−1) and with no amendments (control). Manure amendments increased soil respiration and levels of soluble organic C and microbial biomass C by a factor of 2 to 3 compared with the control, whereas the N fertilizer had little effect on any parameter. Soil temperature explained most of the variations in CO2 flux (78 to 95%) in each treatment, but data from all treatments could not be fitted to a unique relationship. Increases in CO2 emission and soluble C resulting from manure amendments were strongly correlated (r2 = 0.75) with soil temperature. This observation confirms that soluble C is an active C pool affected by biological activity. The positive correlation between soluble organic C and soil temperature also suggests that production of soluble C increases more than mineralization of soluble C as temperature increases. The total manure-derived CO2-C was equivalent to 52% of the applied stockpiled-manure C and 67% of the applied rotted-manure C. Estimates of average turnover rates of microbial biomass ranged between 0.72 and 1.22 yr−1 and were lowest in manured soils. Manured soils also had large quantities of soluble C with a slower turnover rate than that in either fertilized or unamended soils. Key words: Soil respiration, greenhouse gas, soil carbon


2006 ◽  
Vol 57 (8) ◽  
pp. 837 ◽  
Author(s):  
G. M. Lodge ◽  
K. L. King

Studies were conducted at 3 pasture sites in northern New South Wales to examine the effects of grazing treatments over 4 years (spring 1997 to spring 2001) on soil microbial biomass carbon (C), labile C, total C, and total nitrogen (N). These data were collected (0–0.05 m soil depth) at 9 sampling times in 2 replicates of 5 (native pastures) or 4 (a sown pasture) grazing treatments and examined for differences over time using cubic spline analyses. For each site, differences among grazing treatments were also examined in spring 2001 for herbage, litter, and root mass (kg DM/ha), ground cover (%), and perennial grass basal cover (%). Indices were also calculated for the C pool index (CPI), lability index (LI), a carbon management index (CMI), and the microbial quotient. Relationships among microbial biomass C, labile C, total organic C, CPI, LI, CMI, microbial quotient, herbage mass, litter mass, and ground cover were examined by linear regression and correlation analyses. For each of the sites, treatment differences in the linear trend over time for soil microbial biomass C, labile C, total organic C, or total N were not significantly different (P > 0.05). In spring 2001, (4 years after treatments commenced) there were also no significant effects of treatments within sites on soil total organic C and none of the indices (lability of C, CPI, LI, CMI, or the microbial quotient) indicated any distinct trends among treatments. However, in spring 2001, there were significant (P < 0.05) treatment effects at both native pasture sites for herbage mass, litter mass, and ground cover. Similarly, in autumn 2001, herbage mass, root mass, and perennial grass basal cover were lowest (P < 0.05) in the continuously grazed high-stocking rate treatment at the sown pasture site. For all data, microbial biomass C was 10.35% of labile C and labile C was 21.60% of total C. From autumn 1998 to spring 2001, labile C was positively correlated (P < 0.05) with total C (r = 0.72) and in spring 2001, these 2 variables were also highly correlated (r = 0.98).


Author(s):  
Gong ◽  
Zhang ◽  
Guo

: Soil and soil microbial biomass (SMB) carbon: nitrogen: phosphorus (C:N:P) stoichiometry are important parameters to determine soil balance of nutrients and circulation of materials, but how soil and SMB C:N:P stoichiometry is affected by climate change remains unclear. Field experiments with warming and N addition had been implemented since April 2007. Infrared radiators were used to manipulate temperature, and aqueous ammonium nitrate (10 g m-2 yr-1) was added to simulate nitrogen deposition. We found that molar nutrient ratios in the soil averaged 60:11:1, warming and warming plus N addition reduced soil C:N by 14.1% and 20% (P < 0.01), and reduced soil C:P ratios by 14.5% and 14.8% (P < 0.01). N addition reduced soil C:N significantly by 17.6% (P < 0.001) (Figs. 2B, 2D). N addition and warming plus N addition increased soil N:P significantly by 24.6% and 7.7% (P < 0.01). The SMB C:N, C:P and N:P ratios increased significantly with warming, N addition and warming plus N addition. Warming and N addition increased the correlations between SOC and soil microbial biomass C (SMBC), soil total P and soil microbial biomass P (SMBP), warming increased the correlation between the soil total N and soil microbial biomass N (SMBN). After four years’ treatment, our results demonstrated that the combined effects of warming and N fertilization could change the C, N, P cycling by affecting soil and SMB C:N:P ratios significantly and differently. At the same time, our results suggested SMB might have weak homeostasis in Sonnen Grassland and warming and N addition would ease N-limitation but aggravate P-limitation in northeastern China. Furthermore, these results further the current demonstration of the relationships between the soil and SMB C:N:P stoichiometry in response to global change in temperate grassland ecosystems.


Soil Research ◽  
2000 ◽  
Vol 38 (6) ◽  
pp. 1087 ◽  
Author(s):  
G. F. Barkle ◽  
R. Stenger ◽  
P. L. Singleton ◽  
D. J. Painter

Over recent years regulatory authorities in New Zealand have promoted irrigation of dairy farm effluent (DFE) onto the land, to protect surface water quality. The rate at which the resistant organic matter from DFE accumulates in the soil and the effect of any accumulation on other soil organic matter (SOM) related pools, such as microbial biomass, are, however, unknown. This information is necessary to determine the long-term impact and sustainability of land-applied DFE. In this paper we report on changes over 4 years in organic carbon (C org) and total nitrogen (N t ) from a soil receiving a high application rate of DFE. Soil microbial biomass (C mic ) measurements were also included to test the hypothesis that C mic or the C mic /C org ratio can be used as an early indicator of changes in SOM. The regular irrigation with DFE at the high rates used in this study increased the C mic , pH, C org , and N t of the soil receiving the effluent. The time series of C mic showed that this measurement is suitable as an early indicator of changes in C org and N t , whereas a single determination of the C mic /C org ratio was not. The sustainability of DFE application onto land in terms of N leaching can be maintained only when the supply of inorganic N is continually matched by the demand of the pasture. This means that inorganic N fertilisation has to be reduced concurrently with the gradually increasing N mineralisation from the accumulating organic matter.


2019 ◽  
Author(s):  
Monika Rawat ◽  
Kusum Arunachalam ◽  
Ayyandar Arunachalam ◽  
Juha Alatalo ◽  
Ujjwal Kumar ◽  
...  

Plant-soil interactions are a major determinant of changes in forest ecosystem processes and functioning. We conducted a trait-based study to quantify the contribution of plant traits and soil properties to above- and below-ground ecosystem properties in temperate forest in the Indian Himalayas. Nine plant traits (leaf area, specific leaf area, leaf water content, leaf dry matter content, leaf carbon (C), nitrogen (N), phosphorus (P), leaf C/N, and leaf N/P) and eight soil properties (pH, moisture, available N, P, potassium (K), total C, N, P) were selected for determination of their contribution to major ecosystem processes (above-ground biomass C, soil organic C, soil microbial biomass C, N, and P, and soil respiration) in temperate forest. Among the plant traits studied, leaf C, N, P, and leaf N/P ratio proved to be the main contributors to above-ground biomass, explaining 20-27% of variation. Leaf N, P, and leaf N/P were the main contributors to below-ground soil organic C, soil microbial biomass C, N, and P, and soil respiration (explaining 33% of variation). Together, the soil properties pH, available P, total N and C explained 60% of variation in above-ground biomass, while pH and total C explained 56% of variation in soil organic C. Other soil properties (available P, total C and N) also explained much of the variation in soil microbial biomass C (52%) and N (67%), while soil pH explained some of variation in soil microbial biomass N (14%). Available P, total N, and pH explained soil microbial biomass P (81%), while soil respiration was only explained by soil total C (70%). Thusleaf traits and soil characteristics make a significant contribution to explaining variations in above- and below-ground ecosystem processes and functioning in temperate forest in the Indian Himalayas. Consequently, tree species for afforestation, restoration, and commercial forestryshould be carefully selected, as they can influence the climate change mitigation potential of forest in terms of C stocks in biomass and soils.


1993 ◽  
Vol 23 (7) ◽  
pp. 1286-1290 ◽  
Author(s):  
Hannu Fritze ◽  
Taina Pennanen ◽  
Janna Pietikäinen

Development of humus layer soil microbial biomass C (Cmic) and N (Nmic), fungal biomass (as soil ergosterol content), microbial respiration activity, and the soil organic C (Corg) and N (Ntot) were determined in coniferous forest soils that had received a single prescribed fire treatment at different times over a period of 45 years. The ratio of soil respiration rate to microbial biomass C (qCO2) and the Cmic/Corg and Nmic/Ntot percentages were derived from the measurements taken. All the measured biomass indicators reacted identically to show recovery from prescribed burning within 12 years. A raised metabolic quotient (qCO2) was detected in soils over the first 2 years following the fire treatment, but after the third year it had decreased to a stable level. These observations suggest that during the first few years after fire the soil microflora can be characterized on the basis of simple substrate–decomposer relationships. The first 12 years were characterized by increasing Cmic/Corg and Nmic/Ntot percentages, which then stabilized at mean values of 1.3 and 5.5%, respectively. The observed rise in the Cmic within a large pool of Corg suggested increasing availability of energy-rich C sources. These C sources are probably derived from the organic C input resulting from postfire plant succession.


2011 ◽  
Vol 1 (4) ◽  
pp. 202-207
Author(s):  
N. Ewusi‐Mensah ◽  
V. Logah ◽  
J. O. Fening

This paper reports the short Ã¢â‚¬Â term effects of organic and inorganic fertilizerapplications on the culturable resident bacterial and fungal properties of aFerric Acrisol in the semi Ã¢â‚¬Âdeciduous forest zone of Ghana after three continuouscropping seasons. The treatments were two compost types (i.e. 1:1compost comprising 1 part made up of Chromolaena, Stylosanthes, maizestover mixture and 1 part of cattle manure, 2:1 compost comprising 2 partsof Chromolaena, Stylosanthes, maize stover mixture and 1 part of cattle manure),cowdung, 100% NPK and a control replicated three times in a randomizedcomplete block design. The results showed that total microbial load on alogarithmic scale ranged from 4.6 cfu/g in the control to 5.4 on cowdungtreated plots. Bacterial counts on 2:1 compost applied at 5 t/ha treatedplots recorded 5% more bacteria than the 1:1 compost applied at 5 t/ha.Fungal counts in the control and inorganic treated plots were higher than theorganically amended plots. The highest and lowest microbial biomass C contentswere recorded on cowdung and 1:1 compost at 5 t/ha treated plotsrespectively. Microbial biomass N content ranged from 1.4 Ã¢â‚¬Â 8.2 mg N kg‐1soil with a mean value of 6.2 mg N kg Ã¢â‚¬Â1 soil. Microbial biomass P contentranged from 3.6 Ã¢â‚¬Â 6.3 mg P kg‐1 soil with a mean value of 5 mg P kg‐1 soil.Microbial biomass carbon to organic carbon ratio varied from 18.37 to 85.63.


Sign in / Sign up

Export Citation Format

Share Document