Short‐term effects of organic and inorganic fertilizer applications on soil microbial properties

2011 ◽  
Vol 1 (4) ◽  
pp. 202-207
Author(s):  
N. Ewusi‐Mensah ◽  
V. Logah ◽  
J. O. Fening

This paper reports the short Ã¢â‚¬Â term effects of organic and inorganic fertilizerapplications on the culturable resident bacterial and fungal properties of aFerric Acrisol in the semi Ã¢â‚¬Âdeciduous forest zone of Ghana after three continuouscropping seasons. The treatments were two compost types (i.e. 1:1compost comprising 1 part made up of Chromolaena, Stylosanthes, maizestover mixture and 1 part of cattle manure, 2:1 compost comprising 2 partsof Chromolaena, Stylosanthes, maize stover mixture and 1 part of cattle manure),cowdung, 100% NPK and a control replicated three times in a randomizedcomplete block design. The results showed that total microbial load on alogarithmic scale ranged from 4.6 cfu/g in the control to 5.4 on cowdungtreated plots. Bacterial counts on 2:1 compost applied at 5 t/ha treatedplots recorded 5% more bacteria than the 1:1 compost applied at 5 t/ha.Fungal counts in the control and inorganic treated plots were higher than theorganically amended plots. The highest and lowest microbial biomass C contentswere recorded on cowdung and 1:1 compost at 5 t/ha treated plotsrespectively. Microbial biomass N content ranged from 1.4 Ã¢â‚¬Â 8.2 mg N kg‐1soil with a mean value of 6.2 mg N kg Ã¢â‚¬Â1 soil. Microbial biomass P contentranged from 3.6 Ã¢â‚¬Â 6.3 mg P kg‐1 soil with a mean value of 5 mg P kg‐1 soil.Microbial biomass carbon to organic carbon ratio varied from 18.37 to 85.63.

1992 ◽  
Vol 43 (5) ◽  
pp. 1197
Author(s):  
PR Grace ◽  
IC MacRae ◽  
RJK Myers

Microbiological and chemical assays were performed on clay soils from woodland (Acacia harpophylla-Casuarina cristata), grassland (Panicurn maximum var trichoglume-Chloris gayana) and cropland (Vigna mungo) in the brigalow region of Central Queensland. Over a 15 month period, the microbial biomass C in the top 3.5 cm of native brigalow woodland soil was on average 3630 8g C g-l, 50% more than an associated perennial pasture and over 400% more than an annually cropped soil. Microbial biomass N (575 8g N g-l) in woodland soil was on average 41% and 270% higher than in pasture and cropped soils respectively and highly correlated with seasonal soil moisture content. Viable counts of bacteria were consistently lower (average 69.2%) in the 0-3.5 cm and 3.5-7.5 cm strata of woodland soil compared with pasture and annual crop sites. Soil NO-3- N levels increased two fold in the upper 3.5 cm of the woodland site during low rainfall periods. This increase may be attributed to a more efficient distribution of mineral N mediated by the increased presence of a fungal population in this community. Leaching may also play a significant role in the distribution of plant available N in the brigalow region as suggested by the inverse relationship N = 54.11-0.67 R (P<0.01), where N is soil NO-3-N (8g N g-l) and R is rainfall in the preceding 3 month period (mm month-1).


Agronomy ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1386
Author(s):  
Michael Stotter ◽  
Florian Wichern ◽  
Ralf Pude ◽  
Martin Hamer

Cultivation of Miscanthus x giganteus L. (Mis) with annual harvest of biomass could provide an additional C source for farmers. To test the potential of Mis-C for immobilizing inorganic N from slurry or manure and as a C source for soil organic matter build-up in comparison to wheat (Triticum aestivum L.) straw (WS), a greenhouse experiment was performed. Pot experiments with ryegrass (Lolium perenne L.) were set up to investigate the N dynamics of two organic fertilisers based on Mis at Campus Klein-Altendorf, Germany. The two fertilisers, a mixture of cattle slurry and Mis as well as cattle manure from Mis-bedding material resulted in a slightly higher N immobilisation. Especially at the 1st and 2nd harvest, they were partly significantly different compared with the WS treatments. The fertilisers based on Mis resulted in a slightly higher microbial biomass C and microbial biomass N and thus can be identified as an additional C source to prevent nitrogen losses and for the build-up of soil organic matter (SOM) in the long-term.


HortScience ◽  
2019 ◽  
Vol 54 (3) ◽  
pp. 537-546
Author(s):  
Pengpeng Duan ◽  
Ying Sun ◽  
Yuling Zhang ◽  
Qingfeng Fan ◽  
Na Yu ◽  
...  

A greenhouse field experiment involving tomato (Solanum lycopersicum) was performed using different nitrogen (N) management regimes: sole application of differing rates of chemical N fertilizer (SC) (SC treatments: N0, N1, N2, and N3) and combined application of manure and chemical N fertilizer (MC) (MC treatments: MN0, MN1, MN2, and MN3). These were used to understand the relationship between comprehensive fruit composition, yield, and N fractions (soil mineral N; soil soluble organic N; soil microbial biomass N, and soil fixed ammonium) under greenhouse conditions. The results showed that the MC treatments significantly increased vitamin C and soluble sugar content compared with SC treatments. In addition, the MN2 treatment produced a high yield and had a positive effect on fruit composition. The N3 (563 kg N/ha) and MN3 (796 kg N/ha) treatments resulted in a high loss of N below the root zone (0–30 cm), consequently reducing N use efficiency. Soil mineral N, soil soluble organic N, and soil fixed ammonium tended to be higher during the first fruiting period, whereas soil microbial biomass N tended to be higher during the second fruiting period. MC treatments significantly increased the N fraction in the 0- to 30-cm soil layer; N fractions tended to be higher with the MN2 treatment. According to an optimum regression equation, soil fixed ammonium during the first fruiting period and soil microbial biomass N during the second fruiting period had a more significant influence on tomato yield and fruit composition. Overall, application MC at an appropriate rate (MN2: 608 kg N/ha) is a promising approach to achieving high yields and optimum taste, and it offers a more sustainable fertilizer management strategy compared with chemical N fertilization.


2003 ◽  
Vol 166 (3) ◽  
pp. 326-327 ◽  
Author(s):  
Jürgen K. Friedel ◽  
Corinne Kobel ◽  
Michael Pfeffer ◽  
Walter J. Fitz ◽  
Walter W. Wenzel

1969 ◽  
Vol 100 (2) ◽  
pp. 123-140
Author(s):  
Ian C. Pagán-Roig ◽  
Joaquín A. Chong ◽  
José A. Dumas ◽  
Consuelo Estévez de Jensen

The objective of this work was to measure the effects of repeated short-term organic amendments that we termed soil treatment management cycles (STMC) on physical and biological properties of a San Antón series soil. Each STMC lasted 60 days and consisted of incorporating 5% organic matter from coffee pulp compost; the planting, growth and incorporation of an intercrop of four green manure species; and the application of mycorrhizae and compost tea. The treatments were labeled: CL0, CL1, CL2 and CL3; where CL0 was the control, CL1 received one STMC, CL2 and CL3 received two and three STMC, respectively. The STMC intended to mimic the overall effect of a sustainable agricultural system, not to measure the individual effects of the practices. All treatments (CL1, CL2, CL3) showed an increase in soil organic matter (p≤0.05). When compared to the CL0 control, saturated hydraulic conductivity increased and bulk density decreased in all soils. Soil macroporosity was significantly increased by CL2 and CL3. Soil aggregate stability increased in CL1, CL2 and CL3 plots. Microbial biomass C increased in treatment CL3, and microbial biomass N increased in CL2 and CL3. The production of stable aggregates was correlated to humic acid content and positively influenced all other physical parameters assessed in this study. The STMC had a positive impact on soil properties by increasing the soil organic matter as well as the humic acid fraction. Soil macroporosity, defined as porosity with radius > 38 µm, was significantly increased by treatments CL2 and CL3. All of the organic matter fractions, including total organic matter, humic acid content, microbial biomass C and microbial biomass N were significantly increased by one or more STMC.


Forests ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 433
Author(s):  
Xing Zhao ◽  
Xingliang Xu ◽  
Fang Wang ◽  
Isabel Greenberg ◽  
Min Liu ◽  
...  

Soils δ13C and δ15N are now regarded as useful indicators of nitrogen (N) status and dynamics of soil organic carbon (SOC). Numerous studies have explored the effects of various factors on soils δ13C and δ15N in terrestrial ecosystems on different scales, but it remains unclear how co-varying climatic, edaphic and biotic factors independently contribute to the variation in soil δ13C and δ15N in temperate grasslands on a large scale. To answer the above question, a large-scale soil collection was carried out along a vegetation transect across the temperate grasslands of Inner Mongolia. We found that mean annual precipitation (MAP) and mean annual temperature (MAT) do not correlate with soil δ15N along the transect, while soil δ13C linearly decreased with MAP and MAT. Soil δ15N logarithmically increased with concentrations of SOC, total N and total P. By comparison, soil δ13C linearly decreased with SOC, total N and total P. Soil δ15N logarithmically increased with microbial biomass C and microbial biomass N, while soil δ13C linearly decreased with microbial biomass C and microbial biomass N. Plant belowground biomass linearly increased with soil δ15N but decreased with soil δ13C. Soil δ15N decreased with soil δ13C along the transect. Multiple linear regressions showed that biotic and edaphic factors such as microbial biomass C and total N exert more effect on soil δ15N, whereas climatic and edaphic factors such as MAT and total P have more impact on soil δ13C. These findings show that soil C and N cycles in temperate grasslands are, to some extent, decoupled and dominantly controlled by different factors. Further investigations should focus on those ecological processes leading to decoupling of C and N cycles in temperate grassland soils.


Author(s):  
Gong ◽  
Zhang ◽  
Guo

: Soil and soil microbial biomass (SMB) carbon: nitrogen: phosphorus (C:N:P) stoichiometry are important parameters to determine soil balance of nutrients and circulation of materials, but how soil and SMB C:N:P stoichiometry is affected by climate change remains unclear. Field experiments with warming and N addition had been implemented since April 2007. Infrared radiators were used to manipulate temperature, and aqueous ammonium nitrate (10 g m-2 yr-1) was added to simulate nitrogen deposition. We found that molar nutrient ratios in the soil averaged 60:11:1, warming and warming plus N addition reduced soil C:N by 14.1% and 20% (P < 0.01), and reduced soil C:P ratios by 14.5% and 14.8% (P < 0.01). N addition reduced soil C:N significantly by 17.6% (P < 0.001) (Figs. 2B, 2D). N addition and warming plus N addition increased soil N:P significantly by 24.6% and 7.7% (P < 0.01). The SMB C:N, C:P and N:P ratios increased significantly with warming, N addition and warming plus N addition. Warming and N addition increased the correlations between SOC and soil microbial biomass C (SMBC), soil total P and soil microbial biomass P (SMBP), warming increased the correlation between the soil total N and soil microbial biomass N (SMBN). After four years’ treatment, our results demonstrated that the combined effects of warming and N fertilization could change the C, N, P cycling by affecting soil and SMB C:N:P ratios significantly and differently. At the same time, our results suggested SMB might have weak homeostasis in Sonnen Grassland and warming and N addition would ease N-limitation but aggravate P-limitation in northeastern China. Furthermore, these results further the current demonstration of the relationships between the soil and SMB C:N:P stoichiometry in response to global change in temperate grassland ecosystems.


Sign in / Sign up

Export Citation Format

Share Document