scholarly journals Rice (Oryza sativa L.) Establishment Techniques and Their Implications for Soil Properties, Global Warming Potential Mitigation and Crop Yields

Agronomy ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 888
Author(s):  
Md. Khairul Alam ◽  
Richard W. Bell ◽  
Mirza Hasanuzzaman ◽  
N. Salahin ◽  
M.H. Rashid ◽  
...  

Rice-based intensive cropping systems require high input levels making them less profitable and vulnerable to the reduced availability of labor and water in Asia. With continuous conventional puddled rice transplanting, the situation is exacerbated by damaged soil structure, declining underground water and decreasing land and water productivity. To minimize these negative effects a range of new crop establishment practices have been developed (zero tillage, dry direct seeding, wet direct seeding, water seeding, strip planting, bed planting, non-puddled transplanting of rice, mechanical transplanting of rice crop and combinations thereof) with varying effects on soil health, crop productivity, resource saving and global warming mitigation potential. Some of these allow Conservation Agriculture (CA) to be practiced in the rice-based mono-, double- and triple cropping systems. Innovations in machinery especially for smallholder farms have supported the adoption of the new establishment techniques. Non-puddling establishment of rice together with increased crop residue retention increased soil organic carbon by 79% and total N (TN) in soil by 62% relative to conventional puddling practice. Rice establishment methods (direct seeding of rice, system of rice intensification and non-puddled transplanting of rice) improve soil health by improving the physical (reduced bulk density, increased porosity, available water content), chemical (increased phosphorus, potassium and sulphur in their available forms) and biological properties (microbiome structure, microbial biomass C and N) of the soil. Even in the first year of its practice, the non-puddled transplanting method of rice establishment and CA practices for other crops increase the productivity of the rice-based cropping systems. Estimates suggest global warming potential (GWP) (the overall net effect) can be reduced by a quarter by replacing conventional puddling of rice by direct-seeded rice in the Indo-Gangetic Plains for the rice-based cropping system. Moreover, non-puddled transplanting of rice saves 35% of the net life cycle greenhouse gases (GHGs) compared with the conventional practice by a combination of decreasing greenhouse gases emissions from soil and increasing soil organic carbon (SOC). Though the system of rice intensification decreases net GHG emission, the practice releases 1.5 times greater N2O due to the increased soil aeration. There is no single rice establishment technology that is superior to others in all circumstances, rather a range of effective technologies that can be applied to different agro-climates, demography and farm typologies.

2015 ◽  
Vol 12 (17) ◽  
pp. 5161-5184 ◽  
Author(s):  
T. Eickenscheidt ◽  
J. Heinichen ◽  
M. Drösler

Abstract. Drained organic soils are considered to be hotspots for greenhouse gas (GHG) emissions. Arable lands and intensively used grasslands, in particular, have been regarded as the main producers of carbon dioxide (CO2) and nitrous oxide (N2O). However, GHG balances of former peatlands and associated organic soils not considered to be peatland according to the definition of the Intergovernmental Panel on Climate Change (IPCC) have not been investigated so far. Therefore, our study addressed the question to what extent the soil organic carbon (SOC) content affects the GHG release of drained organic soils under two different land-use types (arable land and intensively used grassland). Both land-use types were established on a Mollic Gleysol (labeled Cmedium) as well as on a Sapric Histosol (labeled Chigh). The two soil types differed significantly in their SOC contents in the topsoil (Cmedium: 9.4–10.9 % SOC; Chigh: 16.1–17.2 % SOC). We determined GHG fluxes over a period of 1 or 2 years in case of N2O or methane (CH4) and CO2, respectively. The daily and annual net ecosystem exchange (NEE) of CO2 was determined by measuring NEE and the ecosystem respiration (RECO) with the closed dynamic chamber technique and by modeling the RECO and the gross primary production (GPP). N2O and CH4 were measured with the static closed chamber technique. Estimated NEE of CO2 differed significantly between the two land-use types, with lower NEE values (−6 to 1707 g CO2-C m−2 yr−1) at the arable sites and higher values (1354 to 1823 g CO2-C m−2 yr−1) at the grassland sites. No effect on NEE was found regarding the SOC content. Significantly higher annual N2O exchange rates were observed at the arable sites (0.23–0.86 g N m−2 yr−1) than at the grassland sites (0.12–0.31 g N m−2 yr−1). Furthermore, N2O fluxes from the Chigh sites significantly exceeded those of the Cmedium sites. CH4 fluxes were found to be close to zero at all plots. Estimated global warming potential, calculated for a time horizon of 100 years (GWP100) revealed a very high release of GHGs from all plots ranging from 1837 to 7095 g CO2 eq. m−2 yr−1. Calculated global warming potential (GWP) values did not differ between soil types and partly exceeded the IPCC default emission factors of the Tier 1 approach by far. However, despite being subject to high uncertainties, the results clearly highlight the importance of adjusting the IPCC guidelines for organic soils not falling under the definition in order to avoid a significant underestimation of GHG emissions in the corresponding sectors of the national climate reporting. Furthermore, the present results revealed that mainly the type of land-use, including the management type, and not the SOC content is responsible for the height of GHG exchange from intensive farming on drained organic soils.


2013 ◽  
Vol 117 ◽  
pp. 19-29 ◽  
Author(s):  
Manyowa N. Meki ◽  
Armen R. Kemanian ◽  
Steven R. Potter ◽  
Jürg M. Blumenthal ◽  
Jimmy R. Williams ◽  
...  

2015 ◽  
Vol 12 (7) ◽  
pp. 5201-5258 ◽  
Author(s):  
T. Eickenscheidt ◽  
J. Heinichen ◽  
M. Drösler

Abstract. Drained organic soils are considered as hotspots for greenhouse gas (GHG) emissions. Particularly arable lands and intensively used grasslands have been regarded as the main producers of carbon dioxide (CO2) and nitrous oxide (N2O). However, GHG balances of former peatlands and associated organic soils not considered as peatland according to the definition of the Intergovernmental Panel on Climate Change (IPCC) have not been investigated so far. Therefore, our study addressed the question to what extent the soil organic carbon (SOC) content affects the GHG release of drained organic soils under two different land-use types (arable land and intensively used grassland). Both land-use types were established on a mollic Gleysol (named Cmedium) as well as on a sapric Histosol (named Chigh). The two soil types significantly differed in their SOC contents in the topsoil (Cmedium: 9.4–10.9% SOC; Chigh: 16.1–17.2% SOC). We determined GHG fluxes (CO2, N2O and methane (CH4)) over a period of 2 years. The daily and annual net ecosystem exchange (NEE) of CO2 was determined with the closed dynamic chamber technique and by modeling the ecosystem respiration (RECO) and the gross primary production (GPP). N2O and CH4 were determined by the close chamber technique. Estimated NEE of CO2 significantly differed between the two land-use types with lower NEE values (−6 to 1707 g CO2–C m−2 yr−1) at the arable sites and higher values (1354 to 1823 g CO2–C m−2 yr−1) at the grassland sites. No effect on NEE was found regarding the SOC content. Significantly higher annual N2O exchange rates were observed at the arable sites (0.23–0.86 g N m−2 yr−1) compared to the grassland sites (0.12–0.31 g N m−2 yr−1). Furthermore, N2O fluxes from the Chigh sites significantly exceeded those of the Cmedium sites. CH4 fluxes were found to be close to zero at all plots. Estimated global warming potential, calculated for a time horizon of 100 years (GWP100) revealed a very high release of GHGs from all plots ranging from 1837 to 7095 g CO2 eq. m−2 yr−1. Calculated global warming potential (GWP) values did not differ between soil types and partly exceeded the IPCC default emission factors of the Tier 1 approach by far. However, despite being subject to high uncertainties, the results clearly highlight the importance to adjust the IPCC guidelines for organic soils not falling under the definition, to avoid a significant underestimation of GHG emissions in the corresponding sectors of the national climate reporting. Furthermore, the present results revealed that mainly the land-use including the management and not the SOC content is responsible for the height of GHG exchange from intensive farming on drained organic soils.


2020 ◽  
Vol 12 (14) ◽  
pp. 5695
Author(s):  
Márcio R. Nunes ◽  
Harold M. van Es ◽  
Kristen S. Veum ◽  
Joseph P. Amsili ◽  
Douglas L. Karlen

Soil organic carbon (SOC) influences several soil functions, making it one of the most important soil health indicators. Its quantity is determined by anthropogenic and inherent factors that must be understood to improve SOC management and interpretation. Topsoil (≤15 cm) SOC response to tillage depth and intensity, cover crops, stover removal, manure addition, and various cropping systems was assessed using 7610 observations from eight U.S. regions. Overall, including cover crops, reducing tillage depth and intensity increased SOC. The positive effects of cover crops were more noticeable in South Central, Northwest, and Midwest regions. Removing high rates (>65%) of crop residue decreased SOC in Midwestern and Southeastern soils. Depending on region, applying manure increased SOC by 21 to 41%, compared to non-manured soils. Diversified cropping systems (e.g., those utilizing small mixed vegetables, perennials, or dairy-based systems) had the highest topsoil SOC content, while more intensive annual row crops and large-scale single vegetable production systems, had the lowest. Among inherent factors, SOC increased as precipitation increased, but decreased as mean annual temperature increased. Texture influenced SOC, showing higher values in fine-texture than coarse-texture soils. Finally, this assessment confirmed that SOC can be a sensitive soil health indicator for evaluating conservation practices.


2017 ◽  
Vol 11 (2) ◽  
pp. 81 ◽  
Author(s):  
Chusnul Arif ◽  
Budi Indra Setiawan ◽  
Deka Trisnadi Munarso ◽  
Muhammad Didik Nugraha ◽  
Pradha Wihandi Sinarmata ◽  
...  

System of Rice Intensification (SRI) merupakan budidaya alternatif padi sawah untuk mitigasi Gas Rumah Kaca (GRK). Dua jenis GRK utama yang diemisikan dari padi sawah adalah gas metana (CH4) dan dinitrogen oksida (N2O). Gas tersebut memiliki respon berbeda terhadap keragaman ketersediaan air di lahan yang direpresentasikan dengan tinggi muka air tanah. Global Warming Potential (GWP) atau potensi pemanasan global digunakan untuk membandingkan potensi GRK dalam memanaskan bumi pada periode tertentu, dan disetarakan dengan nilai potensi gas CO2. Penelitian ini bertujuan untuk membandingkan potensi pemanasan global pada berbagai rezim air dengan ketinggian muka air yang berbeda di lahan sawah yang menerapkan SRI. Penelitian dilakukan pada budidaya padi sawah dengan tiga perlakuan rezim air selama satu musim tanam (14 April  hingga 5 Agustus 2016) di plot percobaan laboratorium lapang Departemen Teknik Sipil dan Lingkungan IPB, Bogor, Jawa Barat. Ketiga perlakuan rezim air tersebut adalah rezim tergenang, moderate dan kering . Hasil penelitian menunjukkan bahwa rezim air kering menghasilkan potensi pemanasan global terendah dibandingkan kedua rezim yang lain. Nilai potensi pemanasan global yang dihasilkan adalah 34% dan 41% lebih rendah dibandingkan rezim air tergenang dan moderate. Rezim kering mampu meningkatkan produktivitas tanaman 21% lebih besar dibandingkan rezim air tergenang. Untuk memperkuat hasil yang diperoleh ini, maka penelitian lanjutan diperlukan dengan kondisi cuaca yang berbeda dan lokasi yang beragam.


Sign in / Sign up

Export Citation Format

Share Document