scholarly journals A New Diversity Panel for Winter Rapeseed (Brassica napus L.) Genome-Wide Association Studies

Agronomy ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 2006
Author(s):  
David P. Horvath ◽  
Michael Stamm ◽  
Zahirul I. Talukder ◽  
Jason Fiedler ◽  
Aidan P. Horvath ◽  
...  

A diverse population (429 member) of canola (Brassica napus L.) consisting primarily of winter biotypes was assembled and used in genome-wide association studies. Genotype by sequencing analysis of the population identified and mapped 290,972 high-quality markers ranging from 18.5 to 82.4% missing markers per line and an average of 36.8%. After interpolation, 251,575 high-quality markers remained. After filtering for markers with low minor allele counts (count > 5), we were left with 190,375 markers. The average distance between these markers is 4463 bases with a median of 69 and a range from 1 to 281,248 bases. The heterozygosity among the imputed population ranges from 0.9 to 11.0% with an average of 5.4%. The filtered and imputed dataset was used to determine population structure and kinship, which indicated that the population had minimal structure with the best K value of 2–3. These results also indicated that the majority of the population has substantial sequence from a single population with sub-clusters of, and admixtures with, a very small number of other populations. Analysis of chromosomal linkage disequilibrium decay ranged from ~7 Kb for chromosome A01 to ~68 Kb for chromosome C01. Local linkage decay rates determined for all 500 kb windows with a 10kb sliding step indicated a wide range of linkage disequilibrium decay rates, indicating numerous crossover hotspots within this population, and provide a resource for determining the likely limits of linkage disequilibrium from any given marker in which to identify candidate genes. This population and the resources provided here should serve as helpful tools for investigating genetics in winter canola.

Plants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 2569
Author(s):  
Sani Ibrahim ◽  
Keqi Li ◽  
Nazir Ahmad ◽  
Lieqiong Kuang ◽  
Salisu Bello Sadau ◽  
...  

Roots are complicated quantitative characteristics that play an essential role in absorbing water and nutrients. To uncover the genetic variations for root-related traits in rapeseed, twelve mature root traits of a Brassica napus association panel were investigated in the field within three environments. All traits showed significant phenotypic variation among genotypes, with heritabilities ranging from 55.18% to 79.68%. Genome-wide association studies (GWAS) using 20,131 SNPs discovered 172 marker-trait associations, including 103 significant SNPs (−log10 (p) > 4.30) that explained 5.24–20.31% of the phenotypic variance. With the linkage disequilibrium r2 > 0.2, these significant associations were binned into 40 quantitative trait loci (QTL) clusters. Among them, 14 important QTL clusters were discovered in two environments and/or with phenotypic contributions greater than 10%. By analyzing the genomic regions within 100 kb upstream and downstream of the peak SNPs within the 14 loci, 334 annotated genes were found. Among these, 32 genes were potentially associated with root development according to their expression analysis. Furthermore, the protein interaction network using the 334 annotated genes gave nine genes involved in a substantial number of interactions, including a key gene associated with root development, BnaC09g36350D. This research provides the groundwork for deciphering B. napus’ genetic variations and improving its root system architecture.


2016 ◽  
Author(s):  
Piotr Szulc ◽  
Malgorzata Bogdan ◽  
Florian Frommlet ◽  
Hua Tang

AbstractIn Genome-Wide Association Studies (GWAS) genetic loci that influence complex traits are localized by inspecting associations between genotypes of genetic markers and the values of the trait of interest. On the other hand Admixture Mapping, which is performed in case of populations consisting of a recent mix of two ancestral groups, relies on the ancestry information at each locus (locus-specific ancestry).Recently it has been proposed to jointly model genotype and locus-specific ancestry within the framework of single marker tests. Here we extend this approach for population-based GWAS in the direction of multi marker models. A modified version of the Bayesian Information Criterion is developed for building a multi-locus model, which accounts for the differential correlation structure due to linkage disequilibrium and admixture linkage disequilibrium. Simulation studies and a real data example illustrate the advantages of this new approach compared to single-marker analysis and modern model selection strategies based on separately analyzing genotype and ancestry data, as well as to single-marker analysis combining genotypic and ancestry information. Depending on the signal strength our procedure automatically chooses whether genotypic or locus-specific ancestry markers are added to the model. This results in a good compromise between the power to detect causal mutations and the precision of their localization. The proposed method has been implemented in R and is available at http://www.math.uni.wroc.pl/~mbogdan/admixtures/.


Sign in / Sign up

Export Citation Format

Share Document