scholarly journals Crop Water Requirements and Suitability Assessment in Arid Environments: A New Approach

Agronomy ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 260
Author(s):  
Abdelrazek Elnashar ◽  
Mohamed Abbas ◽  
Hassan Sobhy ◽  
Mohamed Shahba

Efficient land and water management require the accurate selection of suitable crops that are compatible with soil and crop water requirements (CWR) in a given area. In this study, twenty soil profiles are collected to represent the soils of the study area. Physical and chemical properties of soil, in addition to irrigation water quality, provided data are utilized by the Agriculture Land Evaluation System for Arid and semi-arid regions (ALES-Arid) to determine crop suitability. University of Idaho Ref-ET software is used to calculate CWR from weather data while the Surface Energy Balance Algorithms for Land Model (SEBAL) is utilized to estimate CWR from remote sensing data. The obtained results show that seasonal weather-based CWR of the most suitable field crops (S1 and S2 classes) ranges from 804 to 1625 mm for wheat and berssem, respectively, and ranges from 778 to 993 mm in the vegetable crops potato and watermelon, respectively, under surface irrigation. Mean daily satellite-based CWR are predicted based on SEBAL ranges between 4.79 and 3.62 mm in Toshka and Abu Simbel areas respectively. This study provides a new approach for coupling ALES-Arid, Ref-ET and SEBAL models to facilitate the selection of suitable crops and offers an excellent source for predicting CWR in arid environments. The findings of this research will help in managing the future marginal land reclamation projects in arid and semi-arid areas of the world.

2013 ◽  
Vol 340 ◽  
pp. 961-965
Author(s):  
Xin Hua Wang ◽  
Mei Hua Guo ◽  
Hui Mei Liu

According to Kunming 1980-2010 monthly weather data and CROPWAT software and the corresponding crop data, crop water requirements and irrigation water use are calculated. By frequency analysis, irrigation water requirement was get for different guaranteed rate. The results show that: corn, potatoes, tobacco, and soybeans average crop water requirements were 390.7mm, 447.9mm, 361.8mm and 328.4mm, crop water dispersion coefficient is small, period effective rainfall during crop growth in most of the year can meet the crop water requirements, so irrigation water demand is small. While the multi-year average crop water requirements were 400.8mm, 353.5mm, 394.3mm for small spring crops of wheat, beans, rape. Because the effective rainfall for these crops during growth period is relative less, crop irrigation water requirements for small spring crop is much. Vegetables and flowers are plant around the year, so the crop water and irrigation water requirements are the largest.


2018 ◽  
Vol 61 (3) ◽  
pp. 927-935 ◽  
Author(s):  
Qiuxiang Tang ◽  
Gary Feng ◽  
Daniel Fisher ◽  
Huihui Zhang ◽  
Ying Ouyang ◽  
...  

Abstract. The Mississippi Delta is an important agricultural area, producing 67% of the soybean, corn, and cotton grown in the state of Mississippi. Because irrigation can stabilize and increase crop yields and economic returns, approximately 80% of the water withdrawn from the alluvial aquifer is used for irrigation. This region is experiencing severe declines in groundwater level, which threaten the sustainability of irrigated agriculture. Therefore, better irrigation management practices must be developed, but there is lack of knowledge regarding crop water requirements, rain water deficits, and irrigation demand to improve rain and irrigation water use efficiencies of these crops. The objective of this study was to determine the crop water requirements, rain water deficits, and irrigation demand of the three crops using the RZWQM2 model based on a 100-year representative weather data series from the Stoneville weather station for improving irrigation management in the Mississippi Delta. The analysis indicated that mean monthly precipitation in the crop non-growing season from November to the following April was 127 mm, while only 82 mm on average was received during the crop growing season. Soybean, corn, and cotton are typically planted in early May, late March, and late May and harvested in mid-September, late August, and late October, respectively. Rainfall during the growing seasons for soybean, corn, and cotton was 400, 510, and 435 mm and accounted for 31%, 40%, and 34% of annual rainfall, respectively, over the 100-year period. Early seeding can allow crops to receive more early season rainfall and reduce the number of days of water stress during the growing season. Average crop evapotranspiration of soybean, corn, and cotton was 546, 588, and 552 mm, respectively. Rainfall was found to be insufficient to meet the crop water requirements beginning in the 5th, 7th, and 6th weeks after planting. Weekly effective rain water deficits greater than 20 mm were found in weeks 7 through 16 (22 to 29 mm) for soybean, in weeks 11 through 20 (20 to 26 mm) for corn, and in weeks 11 through 16 (20 to 30 mm) for cotton. The RZWQM2 model estimated a range of annual effective rain water deficits in soybean of 0 to 622 mm, with an average deficit of 340 mm. Deficits in corn ranged from 32 to 685 mm, with an average deficit of 355 mm, while deficits in cotton ranged from 169 to 650 mm, with an average deficit of 395 mm. Results obtained from the 100-year historical weather data can be applied to improve irrigation scheduling, water resources planning, and design of irrigation and cropping systems in the Mississippi Delta. Keywords: Corn, Cotton, Crop water requirement, Irrigation demand, Mississippi Delta, Rain water deficit, Soil water balance, Soybean.


2021 ◽  
Author(s):  
Jaouad El Hachimi ◽  
Abderrazak El Harti ◽  
Amine Jellouli

<p>In arid and semi-arid regions, agriculture is an important element of the national economy, but this sector is a large consumer of water. In a context of high pressure on water resources (climate change, population growth, desertification, etc.), an appropriate management is required. The development of remote sensing tools: temporal, spatial and spectral resolution offers a better opportunity for hydro-agricultural management. The main objective of this study is to combine climate data with that of optical remote sensing in order to estimate crop water requirements in the irrigated perimeter of Tadla. In semi-arid regions, such as Tadla Plain, a large quantity of water is lost by evapotranspiration (ET). The objective of this study is to use a scientific approach based on the modulation of evaporative demand for the estimation of crop water requirements. This approach is based on the FAO-56 method using image data from the Sentinel-2A and Landsat-8 satellites, and climate data: surface temperature, air humidity, wind speed, global solar radiation and precipitation. It also allowed the spatialization of crop water requirements on a large area of irrigated crops during the 2016–2017 agricultural season. Maps of water requirements have been developed. They show the variability over time of crop development and their estimated water requirements. The results obtained constitute an important indicator of how water should be distributed over the area in order to improve irrigation efficiency and protection of water resources.</p>


2020 ◽  
Author(s):  
Emmanuel Eze ◽  
Atkilt Girma ◽  
Amanuel Zenebe ◽  
Jean Moussa Kourouma ◽  
Gebreyohannes Zenebe

Abstract The need for accurate and meaningful agricultural data as the means of making vibrant policies and informed decisions, is an increasing concern for policymakers in developing countries such as Ethiopia, where such information is usually scarce. In Ethiopia, the impacts of climate change on crops yields is rarely available at the lowest administrative levels such as wards/villages, for the benefits of the grassroots’ populace. Thus, this research sought to evaluate the use of crop water requirements in the estimation of crops’ yield. FAO’s CROPWAT 8.0 application was used to pre-determine the possibility, preceding the use of CROWRAYEM. Both CROPWAT and CROWRAYEM had high coefficients of determination, when tested with a survey data of barley and sorghum farmers’ yield for the 2015 to 2018 cropping season in semi-arid southern Tigray, northern Ethiopia. Furthermore, the infusion of the crop yield into a recently published area yield index insurance payout structure, increases the functionality of the proposed yield estimated model (CROWRAYEM).


2021 ◽  
Vol 255 ◽  
pp. 107005
Author(s):  
Sara Masia ◽  
Antonio Trabucco ◽  
Donatella Spano ◽  
Richard L. Snyder ◽  
Janez Sušnik ◽  
...  

2013 ◽  
Vol 110 ◽  
pp. 88-98 ◽  
Author(s):  
Christopher Conrad ◽  
Maren Rahmann ◽  
Miriam Machwitz ◽  
Galina Stulina ◽  
Heiko Paeth ◽  
...  

2018 ◽  
Vol 137 (3-4) ◽  
pp. 2203-2215 ◽  
Author(s):  
Xiaoyan Song ◽  
Songbai Song ◽  
Zhi Li ◽  
Wenbin Liu ◽  
Jiuyi Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document