scholarly journals Soil Greenhouse Gas Responses to Biomass Removal in the Annual and Perennial Cropping Phases of an Integrated Crop Livestock System

Agronomy ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1416
Author(s):  
Elizabeth Christenson ◽  
Virginia L. Jin ◽  
Marty R. Schmer ◽  
Robert B. Mitchell ◽  
Daren D. Redfearn

Diversifying agronomic production systems by combining crops and livestock (i.e., Integrated Crop Livestock systems; ICL) may help mitigate the environmental impacts of intensive single-commodity production. In addition, harvesting row-crop residues and/or perennial biomass could increase the multi-functionality of ICL systems as a potential source for second-generation bioenergy feedstock. Here, we evaluated non-CO2 soil greenhouse gas (GHG) emissions from both row-crop and perennial grass phases of a field-scale model ICL system established on marginally productive, poorly drained cropland in the western US Corn Belt. Soil emissions of nitrous oxide (N2O) and methane (CH4) were measured during the 2017–2019 growing seasons under continuous corn (Zea mays L.) and perennial grass treatments consisting of a common pasture species, ‘Newell’ smooth bromegrass (Bromus inermis L.), and two cultivars of switchgrass (Panicum virgatum L.), ‘Liberty’ and ‘Shawnee.’ In the continuous corn system, we evaluated the impact of stover removal by mechanical baling vs. livestock grazing for systems with and without winter cover crop, triticale (x Triticosecale neoblaringhemii A. Camus; hexaploid AABBRR). In perennial grasslands, we evaluated the effect of livestock grazing vs. no grazing. We found that (1) soil N2O emissions are generally higher in continuous corn systems than perennial grasslands due to synthetic N fertilizer use; (2) winter cover crop use had no effect on total soil GHG emissions regardless of stover management treatment; (3) stover baling decreased total soil GHG emissions, though grazing stover significantly increased emissions in one year; (4) grazing perennial grasslands tended to increase GHG emissions in pastures selected for forage quality, but were highly variable from year to year; (5) ICL systems that incorporate perennial grasses will provide the most effective GHG mitigation outcomes.

2006 ◽  
Vol 98 (4) ◽  
pp. 946-950 ◽  
Author(s):  
Dennis E. Rowe ◽  
Timothy E. Fairbrother ◽  
Karamat A. Sistani

2018 ◽  
Vol 47 (2) ◽  
pp. 292-299 ◽  
Author(s):  
Amanda L Buchanan ◽  
Cerruti R R Hooks

2014 ◽  
Vol 18 (12) ◽  
pp. 5239-5253 ◽  
Author(s):  
I.-Y. Yeo ◽  
S. Lee ◽  
A. M. Sadeghi ◽  
P. C. Beeson ◽  
W. D. Hively ◽  
...  

Abstract. Winter cover crops are an effective conservation management practice with potential to improve water quality. Throughout the Chesapeake Bay watershed (CBW), which is located in the mid-Atlantic US, winter cover crop use has been emphasized, and federal and state cost-share programs are available to farmers to subsidize the cost of cover crop establishment. The objective of this study was to assess the long-term effect of planting winter cover crops to improve water quality at the watershed scale (~ 50 km2) and to identify critical source areas of high nitrate export. A physically based watershed simulation model, Soil and Water Assessment Tool (SWAT), was calibrated and validated using water quality monitoring data to simulate hydrological processes and agricultural nutrient cycling over the period of 1990–2000. To accurately simulate winter cover crop biomass in relation to growing conditions, a new approach was developed to further calibrate plant growth parameters that control the leaf area development curve using multitemporal satellite-based measurements of species-specific winter cover crop performance. Multiple SWAT scenarios were developed to obtain baseline information on nitrate loading without winter cover crops and to investigate how nitrate loading could change under different winter cover crop planting scenarios, including different species, planting dates, and implementation areas. The simulation results indicate that winter cover crops have a negligible impact on the water budget but significantly reduce nitrate leaching to groundwater and delivery to the waterways. Without winter cover crops, annual nitrate loading from agricultural lands was approximately 14 kg ha−1, but decreased to 4.6–10.1 kg ha−1 with cover crops resulting in a reduction rate of 27–67% at the watershed scale. Rye was the most effective species, with a potential to reduce nitrate leaching by up to 93% with early planting at the field scale. Early planting of cover crops (~ 30 days of additional growing days) was crucial, as it lowered nitrate export by an additional ~ 2 kg ha−1 when compared to late planting scenarios. The effectiveness of cover cropping increased with increasing extent of cover crop implementation. Agricultural fields with well-drained soils and those that were more frequently used to grow corn had a higher potential for nitrate leaching and export to the waterways. This study supports the effective implementation of cover crop programs, in part by helping to target critical pollution source areas for cover crop implementation.


2017 ◽  
Vol 55 (1) ◽  
pp. 299-310 ◽  
Author(s):  
Janna M. Barel ◽  
Thomas W. Kuyper ◽  
Wietse de Boer ◽  
Jacob C. Douma ◽  
Gerlinde B. De Deyn

2005 ◽  
Vol 268 (1) ◽  
pp. 209-219 ◽  
Author(s):  
S. M. Crandall ◽  
M. L. Ruffo ◽  
G. A. Bollero

Sign in / Sign up

Export Citation Format

Share Document