scholarly journals Differences in Mineral Phase Associated Soil Organic Matter Composition due to Varying Tillage Intensity

Agronomy ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 700 ◽  
Author(s):  
Jakab ◽  
Filep ◽  
Király ◽  
Madarász ◽  
Zacháry ◽  
...  

The volume of soil organic matter (SOM) changes, owing to variations in tillage systems. Conservation tillage (CT) is a useful method for recovering the SOM content of crop fields. However, little is known about the SOM composition of silt- and clay-associated and aggregate-occluded organic matter (OM). The present study aimed at determining the SOM compositions of various SOM fractions in the same Luvisol in a native forest and under ploughing and CT. SOM fractions (silt and clay associated; sand and aggregates associated; restricted OM) were characterized using diffuse reflectance Fourier transform infrared (FTIR) spectroscopy. The size of both the aggregate-occluded and resistant SOM pools increased, owing to the shift in the tillage system to CT for 15 years. As a general trend, the soil organic carbon content was inversely proportional to aromaticity under both crop fields, which supported the preferential mineralization of aliphatic components in each fraction. The shift in the tillage system could trigger rapid qualitative changes even in the stable restricted carbon pools; nevertheless, it was difficult to distinguish between the role of OM and the mineral composition in the FTIR spectra. In particular, the clay-related organic-mineral complexes could trigger difficulties in the traditional interpretation methods.

2020 ◽  
Author(s):  
Gergely Jakab ◽  
Tibor Filep ◽  
Csilla Király ◽  
Balázs Madarász ◽  
Dóra Zacháry ◽  
...  

<p>Soil organic matter (SOM) is in the focus of research as it plays crucial role in soil fertility, carbon sequestration, and all adsorption related processes in the soil. Nevertheless, its compound and the methods to investigate it are rather diverse. Some approach prefers to define different theoretical carbon pools in the soil based on input and mineralization dynamics using mean residence times. Other studies apply physical and/or chemical fractionations of the soil to separate the various eg. mineral phase associated or aggregate occluded carbon pools to gain less heterogeneous material. However, in practice, these two approaches are hardly met each other. As a considerable part of SOM is strongly associated with the mineral colloid fraction or even cations its investigation reveals the question of extractions. Traditional methods aimed to extract pure SOM fractions such as fulvic and humic acids (FA; HA)  and characterized the whole SOM based on them, even though these pure fractions represented only a small part of the total SOM and were not present under natural conditions. Recent methods try to characterize the SOM using in situ samples where the role of organic mineral complexes is still not fully understood. As a result, findings based on several approaches are hardly comparable with each other. The present study aims to characterize SOM based on parallel in situ solid-phase investigation FA separation, and water dissolved organic matter extraction. The study site is a haplic Luvisol under plowing and conservation tillage. Fourier transform infrared spectroscopy on the solid phase fractions resulted in an inverse proportion between organic carbon content and aromaticity independently from tillage. The aggregate occluded SOM was characterized by the lack of aliphatic components, whereas the fine fraction, and the bulk soil associated SOM seemed to be rich in them. The water-soluble SOM revealed molecular size increase in both the fine fraction related and the aggregate occluded organic matter owing to plowing, nonetheless, aggregates occluded the same sized OM molecules as those attached to the fine fraction. In general, FA fractions provided more humified organic matter, whereas water dissolved SOM showed a more intensive microbiome origin. The photometric properties of the FA fractions did not differ between the tillage systems, except for the SUVA254, which provided higher aromaticity under conservation tillage due to the lack of plowing. Also, the water-soluble part of SOM showed more humified composition and increased aromaticity under conservation tillage compared to plowing tillage. As a consequence, beneath the fingerprint of recent microbial activity, DOM reflects soil organic matter composition as well, therefore it seems to be suitable as a direct SOM proxy. The present research was supported by the Hungarian National Research and Innovation Office (NKFIH) K-123953, which is kindly acknowledged.</p>


2018 ◽  
Vol 53 (4) ◽  
pp. 487-494 ◽  
Author(s):  
Roberta Jeske Kunde ◽  
Cláudia Liane Rodrigues de Lima ◽  
Sérgio Delmar dos Anjos e Silva ◽  
Clenio Nailto Pillon

Abstract: The objective of this work was to evaluate the tensile strength, friability, aggregation, and the physical fractions of soil organic matter of a Rhodic Hapludox cultivated with sugarcane (Saccharum officinarum). The treatments consisted of one, three, and five years of cultivation of sugarcane, in the state of Rio Grande do Sul, Brazil. As a reference, a native forest adjacent to the cultivation area, with soil and relief characteristics similar to those of the cultivation areas, was used. Deformed samples were collected at 0.00-0.05, 0.05-0.10, and 0.10-0.20-m soil depths, for the determination of the soil physical attributes and for the physical fractionation of particle-size and density of the organic matter. The physical attribute evaluations were able to detect changes in the structural quality of the Oxisol, which resulted from the sugarcane cultivation. In comparison with the native forest, the stability and tensile strength of the aggregates decreased with the time of sugarcane cultivation. Tensile strength increased with soil depth, proportionally to the reduction of total soil organic carbon content. Soil preparation and straw burning reduce the input of fresh organic matter into the soil and accelerate the decomposition of the labile organic matter compartment, with negative consequences to soil physical properties over time.


Soil Research ◽  
2019 ◽  
Vol 57 (7) ◽  
pp. 712
Author(s):  
J. L. R. Torres ◽  
J. C. Mazetto Júnior ◽  
J. Silva Júnior ◽  
D. M. S. Vieira ◽  
Z. M. Souza ◽  
...  

Soil management has a major effect on soil physical characteristics, and consequently on soil organic matter (SOM) content, which are important for the success of crop production. The aim of this study was to evaluate the soil physical attributes and the accumulation of SOM in no-tillage systems (NTS) with different periods of implantation in a conventional tillage area and to compare them with native forest (NF) in the Cerrado biome. The experiment was planned in a 3 × 4 factorial scheme, consisting of three soil treatments (NTS for 17 years (NTS17), NTS for 5 years (NTS5) and NF) and four soil depths (0–0.1, 0.1–0.2, 0.2–0.3 and 0.3–0.4 m), with a completely randomised design and four replicates. At deep soil layers (0.2–0.4 m) the NTS17 area had a greater soil density than the NTS5 and NF areas, and greater SOM compared with the NTS5 area. Soil macroporosity in the NTS5 area was below 10% at all soil depths evaluated. The NF area had the greatest total organic carbon content (1.39 dag kg–1), stock of carbon (16.63 Mg ha--1), amount of soil organic matter (28.66 Mg ha--1) and equivalent carbon credits (60.96 Mg ha–1). Carbon stocks were similar in the NTS areas in all soil depths evaluated. The results indicate that conventional tillage areas can be successfully recovered under the Cerrado edaphoclimatic conditions with the implantation of an NTS.


Author(s):  
Xiaomeng Wei ◽  
Tida Ge ◽  
Chuanfa Wu ◽  
Shuang Wang ◽  
Kyle Mason-Jones ◽  
...  

1999 ◽  
Vol 79 (1) ◽  
pp. 103-109 ◽  
Author(s):  
F. Courchesne ◽  
J.-F. Laberge ◽  
A. Dufresne

The role of soil organic matter (OM) on SO4 retention was investigated by comparing OM content, SO4 retention, and the distribution of Fe, Al and Si compounds in OM-poor (Grands-Jardins, PGJ) and OM-rich (Hermine, HER) Podzols from Québec, Canada. At both sites, four pedons were sampled by horizon; soil pH in H2O, organic C, phosphate-extractable SO4 and, sodium pyrophosphate, acid ammonium oxalate and dithionite-citrate-bicarbonate (DCB) extractable Fe, Al and Si were measured for each mineral horizon. The mineralogy of the clay (<2 µm) and fine silt (2–20 µm) fractions of selected horizons was determined by X-ray diffraction (XRD) and infrared spectroscopy (IR). Weighted mean organic C and pyrophosphate extractable Fe and Al contents were significantly higher in the HER than in the PGJ sola, while the PGJ soils were richer in amorphous inorganic Al. No trends were observed for inorganic Fe compounds. Chemical dissolution and IR allowed the identification of short-range ordered aluminosilicates, probably allophane, in the OM-poor and slightly acidic to neutral PGJ soils. These materials were absent from the OM-rich and acidic HER soils. Phosphate extractions showed that the weighted mean native SO4 content was five times higher in the PGJ than in the HER soil. Finally, native SO4 was strongly related to inorganic Fe, Al and Si (associated with allophane) at PGJ but only to inorganic Fe at HER. These results indicate that OM indirectly affects SO4 sorption through the influence organic substances exerts on the nature and distribution of pedogenic Fe, Al and Si compounds, such as allophane, in Podzolic profiles. Key words: Organic matter, sulfate, imogolite, allophane, silica, Podzol


Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 7451
Author(s):  
Barbara Breza-Boruta ◽  
Karol Kotwica ◽  
Justyna Bauza-Kaszewska

Properly selected tillage methods and management of the available organic matter resources are considered important measures to enable farming in accordance with the principles of sustainable agriculture. Depending on the depth and intensity of cultivation, tillage practices affect soil chemical composition, structure and biological activity. The three-year experiment was performed on the soil under spring wheat (cv. Tybalt) short-time cultivation. The influence of different tillage systems and stubble management on the soil’s chemical and biological parameters was analyzed. Organic carbon content (OC); content of biologically available phosphorus (Pa), potassium (Ka), and magnesium (Mg); content of total nitrogen (TN), mineral nitrogen forms: N-NO3 and N-NH4 were determined in various soil samples. Moreover, the total number of microorganisms (TNM), bacteria (B), actinobacteria (A), fungi (F); soil respiratory activity (SR); and pH in 1 M KCl (pH) were also investigated. The results show that organic matter amendment is of greater influence on soil characteristics than the tillage system applied. Manure application, as well as leaving the straw in the field, resulted in higher amounts of organic carbon and biologically available potassium. A significant increase in the number of soil microorganisms was also observed in soil samples from the experimental plots including this procedure.


Perspektif ◽  
2016 ◽  
Vol 14 (1) ◽  
pp. 61
Author(s):  
Djajadi Djajadi

<p class="Default">ABSTRACT</p><p class="Default">Organik matter has an important role in determining soil health of sugarcane, i.e. soil capacity to support sugarcane to produce sustainable high yield. Soil organic matter influences soil physical, chemical, and biological properties, so that a consequence of declining soil organic matter is poorer soil fertility and lower yield. This paper has an objective to elucidate the important role of organic matter on sustainable farming of sugarcane. The important role of organic matter in soil fertility has been known for a long time before Green Revolution concept was introduced. With more intensity in sugarcane farming and more increasing of sugar demand, application of organic fertilizer started to be substituted by chemical fertilizer. Using green manure and/or biofertilizer has a chance to be spread out to the farmers due to more practical and more efficient than solid organik fertilizer, such as dung manure or compost. Future research should be focusing on the efectivity of green manure and or biofertilzer sources in improving soil fertility and cane yield, minimizing soil pathogen, reducing soil erosion of sugar cane land monoculture, and improving awareness of farmers about soil degradation as consequences of sugarcane monoculture planting for years.</p><p class="Default">Keywords: Organic matter, sugarcane, soil health sustainable farming</p><p class="Default"> </p><p class="Default"><strong>Bahan Organik: Peranannya dalam Budidaya Tebu Berkelanjutan</strong></p><p class="Default">ABSTRAK</p><p class="Default">Bahan organik tanah berperan penting dalam menentukan kesehatan tanah tebu, yaitu kapasitas tanah yang dapat mendukung produksi tebu yang tinggi secara berkelanjutan. Kadar bahan organik tanah mempengaruhi sifat fisik, kimia dan biologi tanah. Paper ini bertujuan untuk menguraikan tentang peranan bahan organik dalam memperbaiki sifat fisik, kimia dan biologi tanah pertanaman tebu. Pentingnya peran bahan oganik tersebut sudah disadari dari dulu, sehingga sebelum revolusi hijau penggunaan pupuk organik sudah umum dilakukan petani. Dengan semakin intensifnya budidaya tebu dan semakin meningkatnya kebutuhan gula, pemanfaatan pupuk organik sudah jarang dilakukan. Diperlukan usaha untuk meningkatkan dan mempertahankan kadar bahan organik pada lahan tebu, antara lain berupa gerakan masal dalam bentuk gerakan nasional melalui program aplikasi bahan organik. Pemanfaatan pupuk hijau dan/atau pupuk hayati berpeluang untuk diterapkan karena lebih praktis dan efisien daripada penambahan pupuk organik padat. Penelitian ke depan perlu difokuskan untuk mengkaji jenis-jenis pupuk organik dan pupuk hayati yang efektif memperbaiki kesuburan, dalam menekan serangan penyakit, meminimalkan erosi pada lahan-lahan tebu monokultur, dan meningkatkan kesadaran petani tebu tentang terjadinya degradasi lahan akibat penanaman tebu yang terus menerus.</p><p class="Default">Kata kunci: Bahan organik, tebu, kesehatan tanah, budidaya berkelanjutan</p><p class="Default"> </p>


Sign in / Sign up

Export Citation Format

Share Document