scholarly journals Genetic Background and Inbreeding Depression in Romosinuano Cattle Breed in Mexico

Animals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 321
Author(s):  
Jorge Hidalgo ◽  
Alberto Cesarani ◽  
Andre Garcia ◽  
Pattarapol Sumreddee ◽  
Neon Larios ◽  
...  

The ultimate goal of genetic selection is to improve genetic progress by increasing favorable alleles in the population. However, with selection, homozygosity, and potentially harmful recessive alleles can accumulate, deteriorating genetic variability and hampering continued genetic progress. Such potential adverse side effects of selection are of particular interest in populations with a small effective population size like the Romosinuano beef cattle in Mexico. The objective of this study was to evaluate the genetic background and inbreeding depression in Mexican Romosinuano cattle using pedigree and genomic information. Inbreeding was estimated using pedigree (FPED) and genomic information based on the genomic relationship matrix (FGRM) and runs of homozygosity (FROH) of different length classes. Linkage disequilibrium (LD) was evaluated using the correlation between pairs of loci, and the effective population size (Ne) was calculated based on LD and pedigree information. The pedigree file consisted of 4875 animals born between 1950 and 2019, of which 71 had genotypes. LD decreased with the increase in distance between markers, and Ne estimated using genomic information decreased from 610 to 72 animals (from 109 to 1 generation ago), the Ne estimated using pedigree information was 86.44. The reduction in effective population size implies the existence of genetic bottlenecks and the decline of genetic diversity due to the intensive use of few individuals as parents of the next generations. The number of runs of homozygosity per animal ranged between 18 and 102 segments with an average of 55. The shortest and longest segments were 1.0 and 36.0 Mb long, respectively, reflecting ancient and recent inbreeding. The average inbreeding was 2.98 ± 2.81, 2.98 ± 4.01, and 7.28 ± 3.68% for FPED, FGRM, and FROH, respectively. The correlation between FPED and FGRM was −0.25, and the correlations among FPED and FROH of different length classes were low (from 0.16 to 0.31). The correlations between FGRM and FROH of different length classes were moderate (from 0.44 to 0.58), indicating better agreement. A 1% increase in population inbreeding decreased birth weight by 0.103 kg and weaning weight by 0.685 kg. A strategy such as optimum genetic contributions to maximize selection response and manage the long-term genetic variability and inbreeding could lead to more sustainable breeding programs for the Mexican Romosinuano beef cattle breed.

Author(s):  
L. Pienaar ◽  
F.W.C. Neser ◽  
J.P. Grobler ◽  
M.M. Scholtz ◽  
M.D. MacNeil

SummaryThe reduction of genetic variability in beef cattle has been extensively researched on a global scale. However, the genetic variability and inbreeding of indigenous cattle breeds of Southern Africa, referred to as Sanga cattle, has been less well characterized. Breeds of Sanga cattle include Afrikaner, Drakensberger and Nguni breeds. In recent years, the number of Afrikaner cattle and herds has decreased. Our objective was to determine the mean level of inbreeding (F), effective population size (Ne) and generation intervals of Afrikaner cattle using their recorded pedigree. A total of 244 718 records extending from 1940 until 2011 were analysed. The average inbreeding coefficient was 1.83 percent and the effective population size was 167.54. The average generation interval was calculated as 6.6 ± 3.9 years. Pedigree analysis on the Afrikaner cattle population yielded levels of inbreeding that appear to be both acceptable and manageable. By implication, the largeNeresults in a low rate of change inF. Current results study can be utilized by farmers and the breeders’ society to conserve the Afrikaner and utilize the breed to its full potential in the era of climate change.


2011 ◽  
Vol 54 (1) ◽  
pp. 1-9
Author(s):  
L. Vostrý ◽  
Z. Čapková ◽  
J. Přibyl ◽  
B. Hofmanová ◽  
H. Vostrá Vydrová ◽  
...  

Abstract. In order to estimate effective population size, generation interval and the development of inbreeding coefficients (Fx) in three original breeds of cold-blooded horses kept in the Czech Republic: Silesian Noriker (SN), Noriker (N) and Czech-Moravian Belgian horse (CMB) all animals of the particular breeds born from 1990 to 2007 were analysed. The average values of generation interval between parents and their offspring were: 8.53 in SN, 8.88 in N and 8.56 in CMB. Average values of effective population size were estimated to be: 86.3 in SN, 162.3 in N and 104.4 in CMB. The average values of inbreeding coefficient were 3.13 % in SN stallions and 3.39 % in SN mares, in the N breed 1.76 % and 1.26 % and in the CMB breed 3.84 % and 3.26 % respectively. Overall averages of Fx were: 3.23 %, 1.51 % and 3.55 % for the breeds SN, N and CMB. The average value of inbreeding coefficient Fx increased by 1.22 % in SN, by 0.35 % in N and by 1.01 % in CMB, respectively. This may lead to a reduction in genetic variability. Reduction in genetic variability could be either controlled in cooperation with corresponding populations of cold-blooded breeds in other European countries or controlled by number of sires used in population


Genetics ◽  
1977 ◽  
Vol 86 (3) ◽  
pp. 697-713
Author(s):  
C Chevalet ◽  
M Gillois ◽  
R F Nassar

ABSTRACT Properties of identity relation between genes are discussed, and a derivation of recurrent equations of identity coefficients in a random mating, diploid dioecious population is presented. Computations are run by repeated matrix multiplication. Results show that for effective population size (Ne) larger than 16 and no mutation, a given identity coefficient at any time t can be expressed approximately as a function of (1—f), (1—f)3 and (1—f)6, where f is the mean inbreeding coefficient at time t. Tables are presented, for small Ne values and extreme sex ratios, showing the pattern of change in the identity coefficients over time. The pattern of evolution of identity coefficients is also presented and discussed with respect to N eu, where u is the mutation rate. Applications of these results to the evolution of genetic variability within and between inbred lines are discussed.


Animals ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 1089
Author(s):  
Andreia J. Amaral ◽  
Ana L. Pavão ◽  
Luis T. Gama

Ramo Grande is a local cattle breed raised in the archipelago of Azores, with a small and dispersed census, where inbreeding control is of utmost importance. A single nucleotide polymorphism (SNP) Beadchip array was used to assess inbreeding, by analysis of genomic regions harboring contiguous homozygous genotypes named runs of homozygosity (ROH), and to estimate past effective population size by analysis of linkage disequilibrium (LD). Genetic markers associated with production traits were also investigated, exploiting the unique genetic and adaptation features of this breed. A total of 639 ROH with length >4 Mb were identified, with mean length of 14.96 Mb. The mean genomic inbreeding was 0.09, and long segments of ROH were common, indicating recent inbred matings. The LD pattern indicates a large effective population size, suggesting the inflow of exotic germplasm in the past. The genome-wide association study identified novel markers significantly affecting longevity, age at first calving and direct genetic effects on calf weight. These results provide the first evidence of the association of longevity with genes related with DNA recognition and repair, and the association of age at first calving with aquaporin proteins, which are known to have a crucial role in reproduction.


1984 ◽  
Vol 44 (3) ◽  
pp. 321-341 ◽  
Author(s):  
P. J. Avery

SUMMARYFrom the available electrophoretic data, it is clear that haplodiploid insects have a much lower level of genetic variability than diploid insects, a difference that is only partially explained by the social structure of some haplodiploid species. The data comparing X-linked genes and autosomal genes in the same species is much more sparse and little can be inferred from it. This data is compared with theoretical analyses of X-linked genes and genes in haplodiploids. (The theoretical population genetics of X-linked genes and genes in haplodiploids are identical.) X-linked genes under directional selection will be lost or fixed more quickly than autosomal genes as selection acts more directly on X-linked genes and the effective population size is smaller. However, deleterious disease genes, maintained by mutation pressure, will give higher disease incidences at X-linked loci and hence rare mutants are easier to detect at X-linked loci. Considering the forces which can maintain balanced polymorphisms, there are much stronger restrictions on the fitness parameters at X-linked loci than at autosomal loci if genetic variability is to be maintained, and thus fewer polymorphic loci are to be expected on the X-chromosome and in haplodiploids. However, the mutation-random drift hypothesis also leads to the expectation of lower heterozygosity due to the decrease in effective population size. Thus the theoretical results fit in with the data but it is still subject to argument whether selection or mutation-random drift are maintaining most of the genetic variability at X-linked genes and genes in haplodiploids.


2018 ◽  
Author(s):  
Amy Ko ◽  
Rasmus Nielsen

Pedigrees provide a fine resolution of the genealogical relationships among individuals and serve an important function in many areas of genetic studies. One such use of pedigree information is in the estimation of short-term effective population size (Ne), which is of great relevance in fields such as conservation genetics. Despite the usefulness of pedigrees, however, they are often an unknown parameter and must be inferred from genetic data. In this study, we present a Bayesian method to jointly estimate pedigrees and Ne from genetic markers using Markov Chain Monte Carlo. Our method supports analysis of a large number of markers and individuals with the use of composite likelihood, which significantly increases computational efficiency. We show on simulated data that our method is able to jointly estimate relationships up to first cousins and Ne with high accuracy. We also apply the method on a real dataset of house sparrows to reconstruct their previously unreported pedigree.


2017 ◽  
Vol 57 (3) ◽  
pp. 422
Author(s):  
Derly Rodríguez Sarmiento ◽  
Emanuela Tullo ◽  
Rita Rizzi

Genetic variability and structure of the population were studied in 7949 registered Normande cattle in Colombia. The pedigree was deep with 18 traced generations, but there were some incomplete genealogical information for the cattle born in the more distant past. The average number of complete and equivalent complete generations was 2.42 and 5.21, respectively. The average pedigree completeness index for five generations was 0.62, which increased over time, and a significant difference between sexes was found (males: 0.82 ± 0.11; females: 0.62 ± 0.38). The average generation interval was 7.57 years. The number of founders, effective founders, ancestors, and founder genomes were 575, 115, 47, and 22.22, respectively, which suggests that an unequal use of founders and a random loss of alleles from founders occurred over time. The level of inbreeding was 0.019 and increased to 0.023, when the inbreeding coefficient was calculated by assigning inbreeding of contemporaries to founders. These levels of inbreeding lead to an effective population size of 138.5 and 117.9 and to a 0.36% and 0.42% rate of inbreeding, respectively. Out of 267 herds with more than five registered breeding animals, only one nucleus herd was present, whereas 117 and 119 were classified as multiplier and commercial herds, respectively. About 92% of calves were sired by French bulls; but the use of Colombian bulls for breeding is increasing. The Colombian Normande breed is at an acceptable level of genetic variability, although some losses of founder alleles have occurred. As the level of inbreeding has been increasing, inbreeding and mating strategies should be monitored in order to maintain the genetic diversity of the breed.


Sign in / Sign up

Export Citation Format

Share Document