scholarly journals Intravitreal Injection of Long-Acting Pegylated Granulocyte Colony-Stimulating Factor Provides Neuroprotective Effects via Antioxidant Response in a Rat Model of Traumatic Optic Neuropathy

Antioxidants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1934
Author(s):  
Chin-Te Huang ◽  
Yao-Tseng Wen ◽  
Tushar Dnyaneshwar Desai ◽  
Rong-Kung Tsai

Traumatic optic neuropathy (TON) may cause severe visual loss following direct or indirect head trauma which may result in optic nerve injuries and therefore contribute to the subsequent loss of retinal ganglion cells by inflammatory mediators and reactive oxygen species (ROS). Granulocyte colony-stimulating factor (G-CSF) provides the anti-inflammatory and anti-oxidative actions but has a short half-life and also induces leukocytosis upon typical systemic administration. The purpose of the present study was to investigate the relationship between the anti-oxidative response and neuroprotective effects of long-acting pegylated human G-CSF (PEG-G-CSF) in a rat model of optic nerve crush (ONC). Adult male Wistar rats (150–180 g) were chosen to have a sham operation in one eye and have ONC in the other. PEG-G-CSF or phosphate-buffered saline (PBS control) was immediately administered after ONC by intravitreal injection (IVI). We found the IVI of PEG-G-CSF does not induce systemic leukocytosis, but increases survival of RGCs and preserves the visual function after ONC. TUNEL assays showed fewer apoptotic cells in the retina in the PEG-G-CSF-treated eyes. The number of sorely ED1-positive cells was attenuated at the lesion site in the PEG-G-CSF-treated eyes. Immunoblotting showed up-regulation of p-Akt1, Nrf2, Sirt3, and HO-1 in the ON of the PEG-G-CSF-treated eyes. Our results demonstrated that one IVI of long-acting PEG-G-CSF is neuroprotective in the rONC. PEG-G-CSF activates the p-Akt1/Nrf2/Sirt3 and the p-Akt1/Nrf2/HO-1 axes to provide the antioxidative action and further attenuated RGC apoptosis and neuroinflammation. This provides crucial preclinical information for the development of alternative therapy with IVI of PEG-G-CSF in TON.

2011 ◽  
Vol 15 (4) ◽  
pp. 414-421 ◽  
Author(s):  
Junko Kawabe ◽  
Masao Koda ◽  
Masayuki Hashimoto ◽  
Takayuki Fujiyoshi ◽  
Takeo Furuya ◽  
...  

Object Granulocyte colony-stimulating factor (G-CSF) has neuroprotective effects on the CNS. The authors have previously demonstrated that G-CSF also exerts neuroprotective effects in experimental spinal cord injury (SCI) by enhancing migration of bone marrow–derived cells into the damaged spinal cord, increasing glial differentiation of bone marrow–derived cells, enhancing antiapoptotic effects on both neurons and oligodendrocytes, and by reducing demyelination and expression of inflammatory cytokines. Because the degree of angiogenesis in the subacute phase after SCI correlates with regenerative responses, it is possible that G-CSF's neuroprotective effects after SCI are due to enhancement of angiogenesis. The aim of this study was to assess the effects of G-CSF on the vascular system after SCI. Methods A contusive SCI rat model was used and the animals were randomly allocated to either a G-CSF–treated group or a control group. Integrity of the blood–spinal cord barrier was evaluated by measuring the degree of edema in the cord and the volume of extravasation. For histological evaluation, cryosections were immunostained with anti–von Willebrand factor and the number of vessels was counted to assess revascularization. Real-time reverse transcriptase polymerase chain reaction was performed to assess expression of angiogenic cytokines, and recovery of motor function was assessed with function tests. Results In the G-CSF–treated rats, the total number of vessels with a diameter > 20 μm was significantly larger and expression of angiogenic cytokines was significantly higher than those in the control group. The G-CSF–treated group showed significantly greater recovery of hindlimb function than the control group. Conclusions These results suggest that G-CSF exerts neuroprotective effects via promotion of angiogenesis after SCI.


Stroke ◽  
2018 ◽  
Vol 49 (Suppl_1) ◽  
Author(s):  
Ike dela Peña ◽  
Guofang Shen ◽  
Talia Knecht ◽  
Jeffrey Liu ◽  
Hsiao Fang Liang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document