scholarly journals A Cystine-Rich Whey Supplement (Immunocal®) Delays Disease Onset and Prevents Spinal Cord Glutathione Depletion in the hSOD1G93A Mouse Model of Amyotrophic Lateral Sclerosis

Antioxidants ◽  
2014 ◽  
Vol 3 (4) ◽  
pp. 843-865 ◽  
Author(s):  
Erika Ross ◽  
Aimee Winter ◽  
Heather Wilkins ◽  
Whitney Sumner ◽  
Nathan Duval ◽  
...  
2020 ◽  
Vol 29 (16) ◽  
pp. 2647-2661 ◽  
Author(s):  
Rita F Marques ◽  
Jan B Engler ◽  
Katrin Küchler ◽  
Ross A Jones ◽  
Thomas Lingner ◽  
...  

Abstract Amyotrophic lateral sclerosis (ALS) is an incurable neurological disease with progressive loss of motor neuron (MN) function in the brain and spinal cord. Mutations in TARDBP, encoding the RNA-binding protein TDP-43, are one cause of ALS, and TDP-43 mislocalization in MNs is a key pathological feature of >95% of ALS cases. While numerous studies support altered RNA regulation by TDP-43 as a major cause of disease, specific changes within MNs that trigger disease onset remain unclear. Here, we combined translating ribosome affinity purification (TRAP) with RNA sequencing to identify molecular changes in spinal MNs of TDP-43–driven ALS at motor symptom onset. By comparing the MN translatome of hTDP-43A315T mice to littermate controls and to mice expressing wild type hTDP-43, we identified hundreds of mRNAs that were selectively up- or downregulated in MNs. We validated the deregulated candidates Tex26, Syngr4, and Plekhb1 mRNAs in an independent TRAP experiment. Moreover, by quantitative immunostaining of spinal cord MNs, we found corresponding protein level changes for SYNGR4 and PLEKHB1. We also observed these changes in spinal MNs of an independent ALS mouse model caused by a different patient mutant allele of TDP-43, suggesting that they are general features of TDP-43-driven ALS. Thus, we identified SYNGR4 and PLEKHB1 to be deregulated in MNs at motor symptom onset in TDP-43-driven ALS models. This spatial and temporal pattern suggests that these proteins could be functionally important for driving the transition to the symptomatic phase of the disease.


Author(s):  
René Günther ◽  
Martin Suhr ◽  
Jan C. Koch ◽  
Mathias Bähr ◽  
Paul Lingor ◽  
...  

2019 ◽  
Vol 56 (8) ◽  
pp. 5844-5855 ◽  
Author(s):  
Tesfaye Wolde Tefera ◽  
Katherine Bartlett ◽  
Shirley S. Tran ◽  
Mark P. Hodson ◽  
Karin Borges

2006 ◽  
Vol 96 (6) ◽  
pp. 3314-3322 ◽  
Author(s):  
Cristina Zona ◽  
Massimo Pieri ◽  
Irene Carunchio

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by a substantial loss of motor neurons in the spinal cord, brain stem, and motor cortex. Previous evidence showed that in a mouse model of a familial form of ALS expressing high levels of the human mutated protein Cu,Zn superoxide dismutase (Gly93→Ala, G93A), the firing properties of single motor neurons are altered to induce neuronal hyperexcitability. To determine whether the functionality of the macroscopic voltage-dependent Na+ currents is modified in G93A motor neurons, in the present work their physiological properties were examined. The voltage-dependent sodium channels were studied in dissociated motor neurons in culture from nontransgenic mice (Control), from transgenic mice expressing high levels of the human wild-type protein [superoxide dismutase 1 (SOD1)], and from G93A mice, using the whole cell configuration of the patch-clamp recording technique. The voltage dependency of activation and of steady-state inactivation, the kinetics of fast inactivation and slow inactivation of the voltage-dependent Na+ channels were not modified in the mutated mice. Conversely, the recovery from fast inactivation was significantly faster in G93A motor neurons than that in Control and SOD1. The recovery from fast inactivation was still significantly faster in G93A motor neurons exposed for different times (3–48 h) and concentrations (5–500 μM) to edaravone, a free-radical scavenger. Clarification of the importance of these changes in membrane ion channel functionality may have diagnostic and therapeutic implications in the pathogenesis of ALS.


Sign in / Sign up

Export Citation Format

Share Document