scholarly journals Multi-Energy Valley Scattering Characteristics for a SI-GaAs-Based Terahertz Photoconductive Antenna in Linear Mode

2019 ◽  
Vol 10 (1) ◽  
pp. 7
Author(s):  
Chengang Dong ◽  
Wei Shi ◽  
Fei Xue ◽  
Yuhua Hang

In this paper, the relationship between the terahertz radiation and the spatial distribution of photogenerated carriers under different bias electric field is studied. Terahertz pulses and the photocurrent of SI-GaAs photoconductive antenna are measured by the terahertz time-domain spectroscopy system. The occupancy rate for photogenerated carriers for different energy valleys is obtained by comparing the photocurrent of terahertz field integrating with respect to time with the photocurrent measured by oscilloscope. Results indicate that 93.04% of all photogenerated carriers are located in the Γ valley when the bias electric field is 3.33 kV/cm, and 68.6% of all photogenerated carriers are transferred to the satellite valley when the bias electric field is 20.00 kV/cm. With the bias electric field increasing, the carrier occupancy rate for the satellite valley tends to saturate at 72.16%. In order to obtain the carrier occupancy rate for the satellite valley and saturate value at the high bias electric field, an ensemble Monte Carlo simulation based on the theory of photo-activated charge domain is developed.

2019 ◽  
Vol 9 (4) ◽  
pp. 644
Author(s):  
Xue-Shi Li ◽  
Naixing Feng ◽  
Yuan-Mei Xu ◽  
Liang-Lun Cheng ◽  
Qing Liu

A tunable demultiplexer with three output channels infiltrated by liquid crystal (LC) is presented, which is based on a metal-insulator-metal (MIM) waveguide. The operating frequencies of the three output channels can be tuned simultaneously at will by changing the external bias electric field applied to the LC. By analyzing the Fabry-Pérot (FP) resonance modes of the finite-length MIM waveguide both theoretically and numerically, the locations of the three channels are delicately determined to achieve the best demultiplexing effects. Terahertz (THz) signals input from the main channel can be demultiplexed by channels 1, 2 and 3 at 0.7135 THz, 1.068 THz and 1.429 THz, respectively. By applying an external electric field to alter the tilt angle of the infiltrating LC material, the operating frequencies of channels 1, 2 and 3 can be relatively shifted up to 12.3%, 9.6% and 9.7%, respectively. The designed demultiplexer can not only provide a flexible means to demultiplex signals but also tune operating bands of output channels at the same time.


2009 ◽  
Vol 18 (01) ◽  
pp. 73-83
Author(s):  
V. GRIMALSKY ◽  
S. KOSHEVAYA ◽  
J. ESCOBEDO-A

Interaction of infrared electromagnetic (EM) waves in a layered structure with n- GaAs film is investigated theoretically. An oblique incidence of EM wave is considered, when the total internal reflection and resonant transmission occur. It is demonstrated that this structure modulates effectively the infrared EM wave. The modulation mechanism is due to the transfer of electrons from the upper valley to the higher ones in a strong bias electric field. An interaction of strong incident infrared EM pulses with this structure is also considered in the case of the absence of a bias electric field. Both the nonlinear switching of short pulses and the modulation instability of long strong pulses take place.


Sign in / Sign up

Export Citation Format

Share Document