spreading velocity
Recently Published Documents


TOTAL DOCUMENTS

41
(FIVE YEARS 5)

H-INDEX

8
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Zhongyu Shi ◽  
Guanqing Wang ◽  
Xiangxiang Chen ◽  
Lu Wang ◽  
Ning Ding ◽  
...  

Abstract The phenomenon of droplet impact on the immiscible liquid is encountered in a variety of scenarios in nature and industrial production. Despite the exhaustive researches, it is not fully clear how the immiscibility of the droplet with impact liquid affects the crown evolution. The present work experimentally investigates the evolution kinematics of crown formed by a normal impact of camellia oil droplet on immiscible water layer. Based on discussion of dynamic impact behaviors for three critical Weber numbers (We), the radius of crown and its average spreading velocity are compared with those of previous theoretical models to discuss their applicability to the immiscible liquid. The evolution kinematics (morphology and velocity) are analyzed by considering the effects of We and layer thickness. Furthermore, the ability of crown expansion in radical and vertical directions is characterized by a velocity ratio. The results show that our experimental crown radius still follows a square-root function of evolution time, which agrees with the theoretical predictions. The dimensionless average spreading velocity decreases with We and follows a power-law, while the dimensionless average rising velocity remains constant. The velocity ratio is shown to be linearly increasing with We, demonstrating that the rising movement in crown evolution gradually enhances with We. These results are helpful for further investigation on the droplet impact on immiscible liquid layer.



2020 ◽  
Vol 16 (12) ◽  
pp. e1008431
Author(s):  
Martí Català ◽  
Sergio Alonso ◽  
Enrique Alvarez-Lacalle ◽  
Daniel López ◽  
Pere-Joan Cardona ◽  
...  

The appearance and fast spreading of Covid-19 took the international community by surprise. Collaboration between researchers, public health workers, and politicians has been established to deal with the epidemic. One important contribution from researchers in epidemiology is the analysis of trends so that both the current state and short-term future trends can be carefully evaluated. Gompertz model has been shown to correctly describe the dynamics of cumulative confirmed cases, since it is characterized by a decrease in growth rate showing the effect of control measures. Thus, it provides a way to systematically quantify the Covid-19 spreading velocity and it allows short-term predictions and longer-term estimations. This model has been employed to fit the cumulative cases of Covid-19 from several European countries. Results show that there are systematic differences in spreading velocity among countries. The model predictions provide a reliable picture of the short-term evolution in countries that are in the initial stages of the Covid-19 outbreak, and may permit researchers to uncover some characteristics of the long-term evolution. These predictions can also be generalized to calculate short-term hospital and intensive care units (ICU) requirements.



2020 ◽  
Author(s):  
Anne Davaille ◽  
Suzanne Smrekar

<p>Venus today presents no large-scale network of subduction and accretion ridges, which is the signature of plate tectonics on Earth. On the other hand, Venus relatively young surface points towards either a quite recent catastrophic renewal of the whole planet surface (« episodic subduction regime »), or the continuous renewal of small areas of the planet for exemple by volcanism.</p> <p>Unique to Venus, coronae are circular features from 50 to 2600 km in diameter. The largest ones have been attributed to mantle plumes. Close inspection of Magellan’s data revealed that subduction features are also encountered on part of their rim (McKenzie et al, 1992 ; Sandwell and Schubert, 1992, 1995).  Recent modeling has shown that plumes could indeed induce roll-back subduction around segments of an expanding coronae. Artemis coronae is the largest coronae on Venus and shows both plume and subduction features that are well explained by the plume-induced subduction mechanism (Davaille et al, 2017). Scaling laws then predict a slab roll-back (and therefore a coronae expansion) velocity between 1 and 10 cm/yr.  If the coronae has been expanding, then we should expect the existence of an accreting ridge system  inside the coronae, equivalent to the Earth’s mid-ocean ridges developing in back-arc basins. Artemis interior indeed also presents a prominent ridge system (Sandwell and Schubert, 1992 ; Brown and Grimm, 1996 ; Spencer, 2001 ; Hansen, 2002), but its lateral tortuosity is much more prononced than on Earth (fig.1).   </p> <p>Using laboratory experiments, we recently showed that the shape of an accretion ridge is governed primarily by the axial failure parameter Π<sub>F</sub>, which depends on the spreading velocity, the mechanical strength of the lithospheric material and the axial elastic lithosphere thickness (Sibrant et al, 2018). Experiments with the largest Π<sub>F</sub> presented quite unstable ridge axis with a large lateral sinuosity,  long transform faults, and the formation of numerous microplates. These microplates rotate along the transforms before getting incorporated in the main plate on one side of the ridge axis or the other. There, they appear as blocks whose main fabric is either concentric or rotated compared to the main plate’s. </p> <p>On a planet, this regime occurs for high spreading velocity and/or low axial elastic thickness. For the Earth, it would require spreading velocities greater  than 30 cm/yr. But on Venus, where the surface temperature is about 500°C higher, and therefore the elastic thickness on the ridge axis is smaller than on Earth, spreading velocities between 1 and 10 cm/yr would suffice. The scaling laws derived from the laboratory experiments further predict a tortuosity of the ridge axis comparable to what is observed inside Artemis coronae (fig.1). Furthermore, guided by the experiments, we are tempted to identify two long transform faults on each side of Britomartis, as well as a number of rotated blocks or microplates. However, the resolution of Magellan data is not sufficient to be sure of our interpretation. There is an urgent need for better resolution and better coverage of Venus topography, that a mission such as VERITAS could provide.</p> <p> </p>



Author(s):  
Marti Catala ◽  
Sergio Alonso ◽  
Enrique Alvarez Lacalle ◽  
Daniel Lopez ◽  
Pere-Joan Cardona ◽  
...  

Covid-19 appearance and fast spreading took by surprise the international community. Collaboration between researchers, public health workers and politicians has been established to deal with the epidemic. One important contribution from researchers in epidemiology is the analysis of trends so that both current state and short-term future trends can be carefully evaluated. Gompertz model has shown to correctly describe the dynamics of cumulative confirmed cases, since it is characterized by a decrease in growth rate that is able to show the effect of control measures. Thus, it provides a way to systematically quantify the Covid-19 spreading velocity. Moreover, it allows to carry out short-term predictions and long-term estimations that may facilitate policy decisions and the revision of in-place confinement measures and the development of new protocols. This model has been employed to fit the cumulative cases of Covid-19 from several Chinese provinces and from other countries with a successful containment of the disease. Results show that there are systematic differences in spreading velocity between countries. In countries that are in the initial stages of the Covid-19 outbreak, model predictions provide a reliable picture of its short-term evolution and may permit to unveil some characteristics of the long-term evolution. These predictions can also be generalized to short-term hospital and Intensive Care Units (ICU) requirements, which together with the equivalent predictions on mortality provide key information for health officials.



2020 ◽  
Author(s):  
Sun Siyi ◽  
Zheng Yangping

AbstractNovel coronavirus (2019-nCov) has swept the world, and all of the world have been harmful. This article makes prediction and suggestions for the Italy. Up to March 11, 2020, 2019-nCov thoroughly broke out in Italy with over 10,000 confirmed cases notwithstanding the gradually block of the country since March 9, 2020. Estimation of possible infection population and prospective suggestion of handling spread based on exist data are of crucial importance. Considering of the biology parameters obtained based on Chinese clinical data in Wuhan, other scholars’ work and real spread feature of 2019-nCov in Italy, we built a more applicable model called SEIJR with log-normal distributed time delay to forecast the trend of spreading. Adopting Particle Swarm Optimization (PSO), we estimated the early period average spreading velocity (α0) and conducted inversion analysis of time point (T0) when the virus first hit the Italy. Based on fixed α0 and T0, we then obtained the average spreading velocity α1 after the lock by PSO. For the aim of offering expeditious advice, we generated the prediction trends with different α which we considered would be helpful in addressing the infection. Not only solved the complex, nondifferentiable equation of epidemic model, our research also performs well in inversion analysis based on PSO which conveys informative outcomes for further discussion on precatious action. To conclude, the first day of spread is around February 1, 2020 with the early period average spreading velocity α0=0.330 which is higher than most cities in China except Wuhan. After locking the country and attaching great attention to public precaution, the α1 sharply descended to 0.278, indicting the effectiveness of these measures. Furthermore, in order to cope the disease before mid-April, take actions to control the under 0.25 is necessary. Code can be freely downloaded from https://github.com/Summerwork/2019-nCov-Prediction.



2019 ◽  
Vol 880 ◽  
pp. 430-440
Author(s):  
Maziyar Jalaal ◽  
Carola Seyfert ◽  
Jacco H. Snoeijer

Capillary ripples in thin viscous films are important features of coating and lubrication flows. Here, we present experiments based on digital holographic microscopy, measuring with nanoscale resolution the morphology of capillary ripples ahead of a viscous drop spreading on a prewetted surface. Our experiments reveal that upon increasing the spreading velocity, the amplitude of the ripples first increases and subsequently decreases. Above a critical spreading velocity, the ripples even disappear completely and this transition is accompanied by a divergence of the ripple wavelength. These observations are explained quantitatively using linear wave analysis, beyond the usual lubrication approximation, illustrating that new phenomena arise when the capillary number becomes of the order of unity.



2019 ◽  
Vol 12 (4) ◽  
pp. 1265-1272 ◽  
Author(s):  
P. F. Li ◽  
S. F. Wang ◽  
W. L. Dong ◽  
◽  
◽  
...  


Author(s):  
Lei Xu ◽  
Leif C. Stige ◽  
Herwig Leirs ◽  
Simon Neerinckx ◽  
Kenneth L. Gage ◽  
...  

Quantitative knowledge about which natural and anthropogenic factors influence the global spread of plague remains sparse. We estimated the worldwide spreading velocity of plague during the Third Pandemic, using more than 200 years of extensive human plague case records and genomic data, and analyzed the association of spatiotemporal environmental factors with spreading velocity. Here, we show that two lineages, 2.MED and 1.ORI3, spread significantly faster than others, possibly reflecting differences among strains in transmission mechanisms and virulence. Plague spread fastest in regions with low population density and high proportion of pasture- or forestland, findings that should be taken into account for effective plague monitoring and control. Temperature exhibited a nonlinear, U-shaped association with spread speed, with a minimum around 20 °C, while precipitation showed a positive association. Our results suggest that global warming may accelerate plague spread in warm, tropical regions and that the projected increased precipitation in the Northern Hemisphere may increase plague spread in relevant regions.



2018 ◽  
Vol 325 ◽  
pp. 1-10 ◽  
Author(s):  
Yingwei Wang ◽  
Yijun Cao ◽  
Guosheng Li ◽  
Yinfei Liao ◽  
Yaowen Xing ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document