scholarly journals Simulation of Skeletal Muscles in Real-Time with Parallel Computing in GPU

2020 ◽  
Vol 10 (6) ◽  
pp. 2099
Author(s):  
Octavio Navarro-Hinojosa ◽  
Moisés Alencastre-Miranda

Modeling and simulation of the skeletal muscles are usually solved using the Finite Element method (FEM) which, although accurate, commonly needs a complex mesh and the solution is not processed in real-time. In this work, a meshfree model that simulates skeletal muscles considering their functioning and control based on electrical activity, their structure based on biological tissue, and that computes in real-time, is presented. Meshfree methods were used because they are able to surpass most of the limitations that are present in mesh-based methods. The muscular belly was modelled as a particle-based viscoelastic fluid, which is controlled using the monodomain model and shape matching. The smoothed particle hydrodynamics (SPH) method was used to solve both the fluid dynamics and the electrophysiological model. To analyze the accuracy of the method, a similar model was implemented with FEM. Both FEM and SPH methods provide similar solutions of the models in terms of pressure and displacement, with an error of around 0.09, with up to a 10% difference between them. Through the use of General-purpose computing on graphics processing units (GPGPU), real-time simulations that offer a viable alternative to mesh-based models for interactive biological tissue simulations was achieved.

2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Bangquan Liu ◽  
Zhen Liu ◽  
Dechao Sun ◽  
Chunyue Bi

Making unconventional emergent plan for dense crowd is one of the critical issues of evacuation simulations. In order to make the behavior of crowd more believable, we present a real-time evacuation route approach based on emotion and geodesic under the influence of individual emotion and multi-hazard circumstances. The proposed emotion model can reflect the dynamic process of individual in group on three factors: individual emotion, perilous field, and crowd emotion. Specifically, we first convert the evacuation scene to Delaunay triangulation representations. Then, we use the optimization-driven geodesic approach to calculate the best evacuation path with user-specified geometric constraints, such as crowd density, obstacle information, and perilous field. Finally, the Smooth Particle Hydrodynamics method is used for local avoidance of collisions with nearby agents in real-time simulation. Extensive experimental results show that our algorithm is efficient and well suited for real-time simulations of crowd evacuation.


2018 ◽  
Vol 100 (4) ◽  
pp. 2177-2191 ◽  
Author(s):  
Agustín Tobías-González ◽  
Rafael Peña-Gallardo ◽  
Jorge Morales-Saldaña ◽  
Aurelio Medina-Ríos ◽  
Olimpo Anaya-Lara

2018 ◽  
Vol 14 (02) ◽  
pp. 6
Author(s):  
Toni Tegar Sahidi ◽  
Achmad Basuki ◽  
Herman Tolle

<p class="western">Internet of things (IoT) is a complex system with few best practices in building ones, especially on handling real-time communication between IoT devices to the Internet. A framework is often used to fasten building IoT system. This paper present Mobile Internet of Things (MIOT), a framework which use a smartphone as the main component to handle communication between IoT device and the internet. A smartphone is used as the communication gateway (relay) for IoT devices and not as the IoT controller as in common Smartphone-IoT approach. For evaluation purpose, two implementations of IoT prototype scenario is built, an environmental monitoring and a remote controller (RC) car. The experiment shows a quick and easy deployment of IoT system. The Environment Monitoring able to send data to the server in real-time, and control The RC Car with a reasonable response time.</p><p><span>The experiment on 200 ms interval between each packet, shows that MIOT Framework has round-trip latency between MIOT Server and IoT hardware for ≈ 88.007 ms. The addition of smartphone as the main component in the framework (MIOT Apps) contribute to additional latency ≈ 13.145 ms. </span></p><p><span>Using a Smartphone as a gateway for IoT in MIOT Framework is possible and promising. It can be used as a best practice to develop a reliable IoT system which reduces time, effort, and learning overhead on building IoT systems.</span></p>


1992 ◽  
Vol 1 (4) ◽  
pp. 404-420 ◽  
Author(s):  
Joseph M. Cooke ◽  
Michael J. Zyda ◽  
David R. Pratt ◽  
Robert B. McGhee

The Naval Postgraduate School (NPS) has actively explored the design and implementation of networked, real time, three-dimensional battlefield simulations on low-cost, commercially available graphics workstations. The most recent system, NPSNET, has improved in functionality to such an extent that it is considered a low-cost version of the Defense Advanced Research Project Agency's (DARPA) SIMNET system. To reach that level, it was necessary to economize in certain areas of the code so that real time performance occurred at an acceptable level. One of those areas was in aircraft dynamics. However, with “off-the-shelf” computers becoming faster and cheaper, real-time and realistic dynamics are no longer an expensive option. Realistic behavior can now be enhanced through the incorporation of an aerodynamic model. To accomplish this task, a prototype flight simulator was built that is capable of simulating numerous types of aircraft simultaneously within a virtual world. Besides being easily incorporated into NPSNET, such a simulator also provides the base functionality for the creation of a general purpose aerodynamic simulator that is particularly useful to aerodynamics students for graphically analyzing differing aircraft's stability and control characteristics. This system is designed for use on a Silicon Graphics workstation and uses the GL libraries. A key feature of the simulator is the use of quaternions for aircraft orientation representation to avoid singularities and high data rates associated with the more common Euler angle representation of orientation.


Author(s):  
R. Rajesh ◽  
R. Droopad ◽  
C. H. Kuo ◽  
R. W. Carpenter ◽  
G. N. Maracas

Knowledge of material pseudodielectric functions at MBE growth temperatures is essential for achieving in-situ, real time growth control. This allows us to accurately monitor and control thicknesses of the layers during growth. Undesired effusion cell temperature fluctuations during growth can thus be compensated for in real-time by spectroscopic ellipsometry. The accuracy in determining pseudodielectric functions is increased if one does not require applying a structure model to correct for the presence of an unknown surface layer such as a native oxide. Performing these measurements in an MBE reactor on as-grown material gives us this advantage. Thus, a simple three phase model (vacuum/thin film/substrate) can be used to obtain thin film data without uncertainties arising from a surface oxide layer of unknown composition and temperature dependence.In this study, we obtain the pseudodielectric functions of MBE-grown AlAs from growth temperature (650°C) to room temperature (30°C). The profile of the wavelength-dependent function from the ellipsometry data indicated a rough surface after growth of 0.5 μm of AlAs at a substrate temperature of 600°C, which is typical for MBE-growth of GaAs.


1994 ◽  
Vol 33 (01) ◽  
pp. 60-63 ◽  
Author(s):  
E. J. Manders ◽  
D. P. Lindstrom ◽  
B. M. Dawant

Abstract:On-line intelligent monitoring, diagnosis, and control of dynamic systems such as patients in intensive care units necessitates the context-dependent acquisition, processing, analysis, and interpretation of large amounts of possibly noisy and incomplete data. The dynamic nature of the process also requires a continuous evaluation and adaptation of the monitoring strategy to respond to changes both in the monitored patient and in the monitoring equipment. Moreover, real-time constraints may imply data losses, the importance of which has to be minimized. This paper presents a computer architecture designed to accomplish these tasks. Its main components are a model and a data abstraction module. The model provides the system with a monitoring context related to the patient status. The data abstraction module relies on that information to adapt the monitoring strategy and provide the model with the necessary information. This paper focuses on the data abstraction module and its interaction with the model.


2009 ◽  
Vol 28 (12) ◽  
pp. 3007-3009
Author(s):  
Wang-gen WAN ◽  
Ji-cheng LIN ◽  
Xiao-qing YU ◽  
Huan DING ◽  
Xiao-hui TAN

Sign in / Sign up

Export Citation Format

Share Document