NPSNET: Flight Simulation Dynamic Modeling Using Quaternions

1992 ◽  
Vol 1 (4) ◽  
pp. 404-420 ◽  
Author(s):  
Joseph M. Cooke ◽  
Michael J. Zyda ◽  
David R. Pratt ◽  
Robert B. McGhee

The Naval Postgraduate School (NPS) has actively explored the design and implementation of networked, real time, three-dimensional battlefield simulations on low-cost, commercially available graphics workstations. The most recent system, NPSNET, has improved in functionality to such an extent that it is considered a low-cost version of the Defense Advanced Research Project Agency's (DARPA) SIMNET system. To reach that level, it was necessary to economize in certain areas of the code so that real time performance occurred at an acceptable level. One of those areas was in aircraft dynamics. However, with “off-the-shelf” computers becoming faster and cheaper, real-time and realistic dynamics are no longer an expensive option. Realistic behavior can now be enhanced through the incorporation of an aerodynamic model. To accomplish this task, a prototype flight simulator was built that is capable of simulating numerous types of aircraft simultaneously within a virtual world. Besides being easily incorporated into NPSNET, such a simulator also provides the base functionality for the creation of a general purpose aerodynamic simulator that is particularly useful to aerodynamics students for graphically analyzing differing aircraft's stability and control characteristics. This system is designed for use on a Silicon Graphics workstation and uses the GL libraries. A key feature of the simulator is the use of quaternions for aircraft orientation representation to avoid singularities and high data rates associated with the more common Euler angle representation of orientation.

2014 ◽  
Vol 08 (02) ◽  
pp. 209-227 ◽  
Author(s):  
Håkon Kvale Stensland ◽  
Vamsidhar Reddy Gaddam ◽  
Marius Tennøe ◽  
Espen Helgedagsrud ◽  
Mikkel Næss ◽  
...  

There are many scenarios where high resolution, wide field of view video is useful. Such panorama video may be generated using camera arrays where the feeds from multiple cameras pointing at different parts of the captured area are stitched together. However, processing the different steps of a panorama video pipeline in real-time is challenging due to the high data rates and the stringent timeliness requirements. In our research, we use panorama video in a sport analysis system called Bagadus. This system is deployed at Alfheim stadium in Tromsø, and due to live usage, the video events must be generated in real-time. In this paper, we describe our real-time panorama system built using a low-cost CCD HD video camera array. We describe how we have implemented different components and evaluated alternatives. The performance results from experiments ran on commodity hardware with and without co-processors like graphics processing units (GPUs) show that the entire pipeline is able to run in real-time.


2014 ◽  
Vol 926-930 ◽  
pp. 1517-1521
Author(s):  
Xiang Jin Wang ◽  
Guo Dong Li ◽  
Zhi Lu Zhang ◽  
Zhe Li

This paper takes the light geodesic instrument as the research object, puts forward a design idea of the semi-physical simulation training system based on the virtual scene and realizes three-dimensional modeling, real-time scene drawing and real-time data driving display through Virtools and Visual C++. ARM7 and the general-purpose single-chip microcomputer are adopted to realize the function simulation of the equipment. This simulation training system has the characteristics of low cost, low power consumption and high simulation degree.


Author(s):  
Dheeraj Agarwal ◽  
Linghai Lu ◽  
Gareth D. Padfield ◽  
Mark D. White ◽  
Neil Cameron

High-fidelity rotorcraft flight simulation relies on the availability of a quality flight model that further demands a good level of understanding of the complexities arising from aerodynamic couplings and interference effects. One such example is the difficulty in the prediction of the characteristics of the rotorcraft lateral-directional oscillation (LDO) mode in simulation. Achieving an acceptable level of the damping of this mode is a design challenge requiring simulation models with sufficient fidelity that reveal sources of destabilizing effects. This paper is focused on using System Identification to highlight such fidelity issues using Liverpool's FLIGHTLAB Bell 412 simulation model and in-flight LDO measurements from the bare airframe National Research Council's (Canada) Advanced Systems Research Aircraft. The simulation model was renovated to improve the fidelity of the model. The results show a close match between the identified models and flight test for the LDO mode frequency and damping. Comparison of identified stability and control derivatives with those predicted by the simulation model highlight areas of good and poor fidelity.


1964 ◽  
Vol 68 (646) ◽  
pp. 645-652 ◽  
Author(s):  
D. H. Perry ◽  
J. M. Naish

SummarySome of the uses of ground based flight simulation as a research tool to aid the design of new aircraft and their equipment are described. The function of the simulator is to provide a method for investigating humon flying tasks in the laboratory, so that the relationship between the pilot's capabilities and the equipment's characteristics can be systematically studied. The paper is presented in two parts describing recent work on two research simulators at the RAE.Part I deals with the use of simulation for studying aircraft stability and control characteristics. The equipment used at RAE for this work is described, with particular emphasis on methods of presenting to the pilot a simulated view of the outside world, and for reproducing some of the motion cues which he experiences in flight. Experimental evidence of the importance of these simulation cues when making aircraft control assessments is also presented. Several examples of simulation studies into the control of conventional and VTOL aircraft are given, to illustrate the type of research problems in this field which may be tackled and the techniques involved in solving them.


2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Ji Shi ◽  
Ye Zhang ◽  
Bing Yao ◽  
Peixin Sun ◽  
Yuanyuan Hao ◽  
...  

Gliomas are the most invasive and fatal primary malignancy of the central nervous system that have poor prognosis, with maximal safe resection representing the gold standard for surgical treatment. To achieve gross total resection (GTR), neurosurgery relies heavily on generating continuous, real-time, intraoperative glioma descriptions based on image guidance. Given the limitations of currently available equipment, developing a real-time image-guided resection technique that provides reliable functional and anatomical information during intraoperative settings is imperative. Nowadays, the application of intraoperative ultrasound (IOUS) has been shown to improve resection rates and maximize brain function preservation. IOUS, which presents an attractive option due to its low cost, minimal operational flow interruptions, and lack of radiation exposure, is able to provide real-time localization and accurate tumor size and shape descriptions while helping distinguish residual tumors and addressing brain shift. Moreover, the application of new advancements in ultrasound technology, such as contrast-enhanced ultrasound, three-dimensional ultrasound, navigable ultrasound, ultrasound elastography, and functional ultrasound, could help to achieve GTR during glioma surgery. The current review describes current advancements in ultrasound technology and evaluates the role and limitation of IOUS in glioma surgery.


2008 ◽  
Vol 18 (02) ◽  
pp. 401-406 ◽  
Author(s):  
ROGER STETTNER ◽  
HOWARD BAILEY ◽  
STEVEN SILVERMAN

3-D flash ladar, herein defined as obtaining an entire frame of 3-D ladar data with one laser pulse, is an emerging technology with a number of advantages over conventional point scanner systems. Probably the most obvious advantage is the higher data rates possible and the potential for much higher data rates with increases in the associated 3-D focal planes array (FPA) format. High data rate means that topographical mapping, for example, can be obtained more rapidly decreasing the amount of flight time required. This paper investigates the clear but perhaps not-so-intuitive use of the high data rate: time dependent 3-D movies can be acquired at the repetition frequency of the associated laser. Data is taken using 3-D flash ladar cameras fabricated by Advanced Scientific Concepts, Inc. The paper concludes that there are a number of advantages and unique applications of the time dynamic 3-D flash ladar, including 3-D collision avoidance and object tracking.


Frequenz ◽  
2017 ◽  
Vol 71 (9-10) ◽  
pp. 427-438
Author(s):  
Steffen Büchner ◽  
Lukasz Lopacinski ◽  
Rolf Kraemer ◽  
Jörg Nolte

Abstract 100 Gbit/s wireless communication protocol processing stresses all parts of a communication system until the outermost. The efficient use of upcoming 100 Gbit/s and beyond transmission technology requires the rethinking of the way protocols are processed by the communication endpoints. This paper summarizes the achievements of the project End2End100. We will present a comprehensive soft real-time stream processing approach that allows the protocol designer to develop, analyze, and plan scalable protocols for ultra high data rates of 100 Gbit/s and beyond. Furthermore, we will present an ultra-low power, adaptable, and massively parallelized FEC (Forward Error Correction) scheme that detects and corrects bit errors at line rate with an energy consumption between 1 pJ/bit and 13 pJ/bit. The evaluation results discussed in this publication show that our comprehensive approach allows end-to-end communication with a very low protocol processing overhead.


2021 ◽  
Vol 2042 (1) ◽  
pp. 012114
Author(s):  
Dongjun Mah ◽  
Michael Kim ◽  
Athanasios Tzempelikos

Abstract The concept of integrating programmable low-cost cameras into the office infrastructure and BMS for real-time, web-based sensing and control of the luminous environment in buildings is presented in this study. Experiments were conducted to evaluate the potential of predicting the luminance field perceived by an office occupant using a programmable calibrated HDR camera installed at the rear side of a computer monitor or on the wall behind the occupant, for a variety of sky conditions and shading options. The generated luminance maps using Python scripts with OpenCV packages were further processed to extract daylighting and glare metrics using Evalgare. The results showed that: (i) among the different camera resolutions that were compared, the 330x330 resolution was selected as the best option to balance between accurate capturing of visual environment and comfort and computational efficiency; (ii) a camera sensor embedded on the rear side of a computer screen could capture interior visual conditions consistently similarly to those viewed by the occupant, except for sunny conditions without proper shading protection. This prototype study paves the way for luminance monitoring and daylight control using programmable low-cost camera sensors embedded into the office infrastructure.


Sign in / Sign up

Export Citation Format

Share Document