scholarly journals Video Description Model Based on Temporal-Spatial and Channel Multi-Attention Mechanisms

2020 ◽  
Vol 10 (12) ◽  
pp. 4312 ◽  
Author(s):  
Jie Xu ◽  
Haoliang Wei ◽  
Linke Li ◽  
Qiuru Fu ◽  
Jinhong Guo

Video description plays an important role in the field of intelligent imaging technology. Attention perception mechanisms are extensively applied in video description models based on deep learning. Most existing models use a temporal-spatial attention mechanism to enhance the accuracy of models. Temporal attention mechanisms can obtain the global features of a video, whereas spatial attention mechanisms obtain local features. Nevertheless, because each channel of the convolutional neural network (CNN) feature maps has certain spatial semantic information, it is insufficient to merely divide the CNN features into regions and then apply a spatial attention mechanism. In this paper, we propose a temporal-spatial and channel attention mechanism that enables the model to take advantage of various video features and ensures the consistency of visual features between sentence descriptions to enhance the effect of the model. Meanwhile, in order to prove the effectiveness of the attention mechanism, this paper proposes a video visualization model based on the video description. Experimental results show that, our model has achieved good performance on the Microsoft Video Description (MSVD) dataset and a certain improvement on the Microsoft Research-Video to Text (MSR-VTT) dataset.

Sensors ◽  
2022 ◽  
Vol 22 (1) ◽  
pp. 382
Author(s):  
Naoki Ogawa ◽  
Keisuke Maeda ◽  
Takahiro Ogawa ◽  
Miki Haseyama

This paper presents deterioration level estimation based on convolutional neural networks using a confidence-aware attention mechanism for infrastructure inspection. Spatial attention mechanisms try to highlight the important regions in feature maps for estimation by using an attention map. The attention mechanism using an effective attention map can improve feature maps. However, the conventional attention mechanisms have a problem as they fail to highlight important regions for estimation when an ineffective attention map is mistakenly used. To solve the above problem, this paper introduces the confidence-aware attention mechanism that reduces the effect of ineffective attention maps by considering the confidence corresponding to the attention map. The confidence is calculated from the entropy of the estimated class probabilities when generating the attention map. Because the proposed method can effectively utilize the attention map by considering the confidence, it can focus more on the important regions in the final estimation. This is the most significant contribution of this paper. The experimental results using images from actual infrastructure inspections confirm the performance improvement of the proposed method in estimating the deterioration level.


Electronics ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 909
Author(s):  
Shuo Li ◽  
Chiru Ge ◽  
Xiaodan Sui ◽  
Yuanjie Zheng ◽  
Weikuan Jia

Cup-to-disc ratio (CDR) is of great importance during assessing structural changes at the optic nerve head (ONH) and diagnosis of glaucoma. While most efforts have been put on acquiring the CDR number through CNN-based segmentation algorithms followed by the calculation of CDR, these methods usually only focus on the features in the convolution kernel, which is, after all, the operation of the local region, ignoring the contribution of rich global features (such as distant pixels) to the current features. In this paper, a new end-to-end channel and spatial attention regression deep learning network is proposed to deduces CDR number from the regression perspective and combine the self-attention mechanism with the regression network. Our network consists of four modules: the feature extraction module to extract deep features expressing the complicated pattern of optic disc (OD) and optic cup (OC), the attention module including the channel attention block (CAB) and the spatial attention block (SAB) to improve feature representation by aggregating long-range contextual information, the regression module to deduce CDR number directly, and the segmentation-auxiliary module to focus the model’s attention on the relevant features instead of the background region. Especially, the CAB selects relatively important feature maps in channel dimension, shifting the emphasis on the OD and OC region; meanwhile, the SAB learns the discriminative ability of feature representation at pixel level by capturing the relationship of intra-feature map. The experimental results of ORIGA dataset show that our method obtains absolute CDR error of 0.067 and the Pearson’s correlation coefficient of 0.694 in estimating CDR and our method has a great potential in predicting the CDR number.


2021 ◽  
Vol 13 (23) ◽  
pp. 4743
Author(s):  
Wei Yuan ◽  
Wenbo Xu

The segmentation of remote sensing images by deep learning technology is the main method for remote sensing image interpretation. However, the segmentation model based on a convolutional neural network cannot capture the global features very well. A transformer, whose self-attention mechanism can supply each pixel with a global feature, makes up for the deficiency of the convolutional neural network. Therefore, a multi-scale adaptive segmentation network model (MSST-Net) based on a Swin Transformer is proposed in this paper. Firstly, a Swin Transformer is used as the backbone to encode the input image. Then, the feature maps of different levels are decoded separately. Thirdly, the convolution is used for fusion, so that the network can automatically learn the weight of the decoding results of each level. Finally, we adjust the channels to obtain the final prediction map by using the convolution with a kernel of 1 × 1. By comparing this with other segmentation network models on a WHU building data set, the evaluation metrics, mIoU, F1-score and accuracy are all improved. The network model proposed in this paper is a multi-scale adaptive network model that pays more attention to the global features for remote sensing segmentation.


2021 ◽  
Vol 11 ◽  
Author(s):  
Shunyao Luan ◽  
Xudong Xue ◽  
Yi Ding ◽  
Wei Wei ◽  
Benpeng Zhu

PurposeAccurate segmentation of liver and liver tumors is critical for radiotherapy. Liver tumor segmentation, however, remains a difficult and relevant problem in the field of medical image processing because of the various factors like complex and variable location, size, and shape of liver tumors, low contrast between tumors and normal tissues, and blurred or difficult-to-define lesion boundaries. In this paper, we proposed a neural network (S-Net) that can incorporate attention mechanisms to end-to-end segmentation of liver tumors from CT images.MethodsFirst, this study adopted a classical coding-decoding structure to realize end-to-end segmentation. Next, we introduced an attention mechanism between the contraction path and the expansion path so that the network could encode a longer range of semantic information in the local features and find the corresponding relationship between different channels. Then, we introduced long-hop connections between the layers of the contraction path and the expansion path, so that the semantic information extracted in both paths could be fused. Finally, the application of closed operation was used to dissipate the narrow interruptions and long, thin divide. This eliminated small cavities and produced a noise reduction effect.ResultsIn this paper, we used the MICCAI 2017 liver tumor segmentation (LiTS) challenge dataset, 3DIRCADb dataset and doctors’ manual contours of Hubei Cancer Hospital dataset to test the network architecture. We calculated the Dice Global (DG) score, Dice per Case (DC) score, volumetric overlap error (VOE), average symmetric surface distance (ASSD), and root mean square error (RMSE) to evaluate the accuracy of the architecture for liver tumor segmentation. The segmentation DG for tumor was found to be 0.7555, DC was 0.613, VOE was 0.413, ASSD was 1.186 and RMSE was 1.804. For a small tumor, DG was 0.3246 and DC was 0.3082. For a large tumor, DG was 0.7819 and DC was 0.7632.ConclusionS-Net obtained more semantic information with the introduction of an attention mechanism and long jump connection. Experimental results showed that this method effectively improved the effect of tumor recognition in CT images and could be applied to assist doctors in clinical treatment.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
JianTing Yuan ◽  
YiPeng Liu ◽  
Long Yu

The number of malicious websites is increasing yearly, and many companies and individuals worldwide have suffered losses. Therefore, the detection of malicious websites is a task that needs continuous development. In this study, a joint neural network algorithm model combining the attention mechanism, bidirectional independent recurrent neural network (Bi-IndRNN), and capsule network (CapsNet) is proposed. The word vector tool word2vec trains the character- and word-level uniform resource locator (URL) static embedding vector features. At the same time, the algorithm will also extract texture fingerprint features that can compare the content differences of different malicious web URL binary files. Then, the extracted features are fused and input into the joint neural network algorithm model. First, the multihead attention mechanism is used to extract contextual semantic features by adjusting weights and Bi-IndRNN. Second, CapsNet with dynamic routing is used to extract deep semantic information. Finally, the sigmoid classifier is used for classification. This study uses different methods from different angles to extract more comprehensive features. From the experimental results, the method proposed in this study improves the classification accuracy of malicious web page detection compared with other researchers.


CONVERTER ◽  
2021 ◽  
pp. 579-590
Author(s):  
Weirong Xiu

Convolutional neural network based on attention mechanism and a bidirectional independent recurrent neural network tandem joint algorithm (CATIR) are proposed. In natural language processing related technologies, word vector features are extracted based on URLs, and the extracted URL information features and host information features are merged. The proposed CATIR algorithm uses CNN (Convolutional Neural Network) to obtain the deep local features in the data, uses the Attention mechanism to adjust the weights, and uses IndRNN (Independent Recurrent Neural Network) to obtain the global features in the data. The experimental results shows that the CATIR algorithm has significantly improved the accuracy of malicious URL detection based on traditional algorithms to 96.9%.


2019 ◽  
Vol 9 (14) ◽  
pp. 2888 ◽  
Author(s):  
Shichen Lu ◽  
Ruimin Hu ◽  
Jing Liu ◽  
Longteng Guo ◽  
Fei Zheng

In the task of image captioning, learning the attentive image regions is necessary to adaptively and precisely focus on the object semantics relevant to each decoded word. In this paper, we propose a convolutional attention module that can preserve the spatial structure of the image by performing the convolution operation directly on the 2D feature maps. The proposed attention mechanism contains two components: convolutional spatial attention and cross-channel attention, aiming to determine the intended regions to describe the image along the spatial and channel dimensions, respectively. Both of the two attentions are calculated at each decoding step. In order to preserve the spatial structure, instead of operating on the vector representation of each image grid, the two attention components are both computed directly on the entire feature maps with convolution operations. Experiments on two large-scale datasets (MSCOCO and Flickr30K) demonstrate the outstanding performance of our proposed method.


Sign in / Sign up

Export Citation Format

Share Document