scholarly journals Regenerative Organic Rankine Cycle as Bottoming Cycle of an Industrial Gas Engine: Traditional and Advanced Exergetic Analysis

2020 ◽  
Vol 10 (13) ◽  
pp. 4411 ◽  
Author(s):  
Javier Cardenas Gutierrez ◽  
Guillermo Valencia Ochoa ◽  
Jorge Duarte-Forero

This investigation shows a traditional and advanced exergetic assessment of a waste heat recovery system based on recuperative ORC (organic Rankine cycle) as bottoming cycle of a 2 MW natural gas internal combustion engine. The advanced exergetic evaluation divides the study into two groups, the avoidable and unavoidable group and the endogenous and exogenous group. The first group provides information on the efficiency improvement potential of the components, and the second group determines the interaction between the components. A sensitivity analysis was achieved to assess the effect of condensing temperature, evaporator pinch, and pressure ratio with net power, thermal efficiencies, and exergetic efficiency for pentane, hexane, and octane as organic working fluids, where pentane obtained better energy and exergetic results. Furthermore, an advanced exergetic analysis showed that the components that had possibilities of improvement were the evaporator (19.14 kW) and the turbine (8.35 kW). Therefore, through the application of advanced exergetic analysis, strategies and opportunities for growth in the thermodynamic performance of the system can be identified through the avoidable percentage of destruction of exergy in components.

2021 ◽  
Vol 13 (3) ◽  
pp. 1218
Author(s):  
Sharjeel Ashraf Ansari ◽  
Mustafa Khalid ◽  
Khurram Kamal ◽  
Tahir Abdul Hussain Ratlamwala ◽  
Ghulam Hussain ◽  
...  

The proton exchange membrane fuel cell (PEMFC) is the fastest growing fuel cell technology on the market. Due to their sustainable nature, PEMFCs are widely adopted as a renewable energy resource. Fabricating a PEMFC is a costly process; hence, mathematical modeling and simulations are necessary in order to fully optimize its performance. Alongside this, the feasibility of a waste heat recovery system based on the organic Rankine cycle is also studied and power generation for different operating conditions is presented. The fuel cell produces a power output of 1198 W at a current of 24A. It has 50% efficiency and hence produces an equal amount of waste heat. That waste heat is used to drive an organic Rankine cycle (ORC), which in turn produces an additional 428 W of power at 35% efficiency. The total extracted power hence stands at 1626 W. MATLAB/Simulink R2016a is used for modeling both the fuel cell and the organic Rankine cycle.


Energies ◽  
2020 ◽  
Vol 13 (6) ◽  
pp. 1317 ◽  
Author(s):  
Guillermo Valencia Ochoa ◽  
Cesar Isaza-Roldan ◽  
Jorge Duarte Forero

The waste heat recovery system (WHRS) is a good alternative to provide a solution to the waste energy emanated in the exhaust gases of the internal combustion engine (ICE). Therefore, it is useful to carry out research to improve the thermal efficiency of the ICE through a WHRS based on the organic Rankine cycle (ORC), since this type of system takes advantage of the heat of the exhaust gases to generate electrical energy. The organic working fluid selection was developed according to environmental criteria, operational parameters, thermodynamic conditions of the gas engine, and investment costs. An economic analysis is presented for the systems operating with three selected working fluids: toluene, acetone, and heptane, considering the main costs involved in the design and operation of the thermal system. Furthermore, an exergo-advanced study is presented on the WHRS based on ORC integrated to the ICE, which is a Jenbacher JMS 612 GS-N of 2 MW power fueled with natural gas. This advanced exergetic analysis allowed us to know the opportunities for improvement of the equipment and the increase in the thermodynamic performance of the ICE. The results show that when using acetone as the organic working fluid, there is a greater tendency of improvement of endogenous character in Pump 2 of around 80%. When using heptane it was manifested that for the turbine there are near to 77% opportunities for improvement, and the use of toluene in the turbine gave a rate of improvement of 70%. Finally, some case studies are presented to study the effect of condensation temperature, the pinch point temperature in the evaporator, and the pressure ratio on the direct, indirect, and fixed investment costs, where the higher investment costs were presented with the acetone, and lower costs when using the toluene as working fluid.


2017 ◽  
Vol 129 ◽  
pp. 285-292 ◽  
Author(s):  
Fuhaid Alshammari ◽  
A. Karvountzis-Kontakiotis ◽  
A. Pesiridis ◽  
Timothy Minton

Sign in / Sign up

Export Citation Format

Share Document