scholarly journals End-Users’ Augmented Reality Utilization for Architectural Design Review

2020 ◽  
Vol 10 (15) ◽  
pp. 5363 ◽  
Author(s):  
Jin Gang Lee ◽  
JoonOh Seo ◽  
Ali Abbas ◽  
Minji Choi

To effectively use augmented reality (AR) technology for end-user involved design collaboration, it is necessary to ensure the effectiveness of the AR system from the end-user’s perspective. However, most efforts have mainly focused on technological development, and as such, limited attention has been paid to the end-user’s application of the AR system. Therefore, this study investigates how the AR system affects architectural design review based on the user’s perspectives. Three different display systems presenting a 3D model including a 2D screen, VR, and AR were tested, and a total of 76 participants evaluated visual presentation quality, perceived acceptability, and user experience according to their usage of the visualization platform types during the design review activities. Compared to other systems, the results indicated that the AR system could be more effective in reviewing the visual elements of a building. Furthermore, AR showed the highest ratings for acceptance level and user experience. The innovation provided by AR created a positive user experience, despite its remaining challenges to be resolved in terms of functionality. Since it is expected that the use of AR can be promoted by overcoming certain technological limitations, this study contributes to guiding AR system applications for end-users involved in the design review process.

2020 ◽  
Vol 0 (0) ◽  
pp. 1-15
Author(s):  
Vida Davidavičienė ◽  
Jurgita Raudeliūnienė ◽  
Rima Viršilaitė

Globalization, technological development and a dynamic business environment influence the change of customer information demands. It becomes vital for organizations to find out the customer demand change and discover technological solutions to satisfy these demands. One of these technologies is augmented reality, which connects real and digital environments by expanding it with digitally coded information which is decoded by using a specific device. As this type of technology enables the changing information needs of customers to be met faster, organizations are increasingly using these technological solutions to achieve a variety of purposes: to position products innovatively, increase product awareness, create added value for the customer, increase sales. However, organizations often face the challenge of evaluating commercial augmented reality mobile applications in user experience. A two-case study has been selected to evaluate the user experience of augmented reality commercial mobile applications and provide recommendations for their development to address this issue. In this research, such methods as scoping scientific literature review, expert evaluation, and user experience questionnaire method were used. The study has identified the main factors influencing the positive user experience: the explicit purpose of the application, easy to use and learn, smooth operation, imaginative information presentation, and interactivity.


2020 ◽  
Vol 10 (17) ◽  
pp. 5915
Author(s):  
Yixuan Jin ◽  
JoonOh Seo ◽  
Jin Gang Lee ◽  
Seungjun Ahn ◽  
SangUk Han

Three-dimensional (3D) visualization technology, such as augmented reality (AR), has served as the display for building information modeling (BIM)-based architectural design collaboration to provide more effective design observation and communication for stakeholders. That said, AR has several technical limitations in terms of personal device issues, user experience, and visualization quality. A new form of AR called spatial augmented reality (SAR) has been introduced to address these issues, which uses a digital projector to present graphics on physical objects for augmenting real-world objects. Therefore, SAR has great benefits and potentials to combine with BIM for design collaboration. This paper introduces a BIM-based SAR operational framework, where 3D building models generated from BIM software are imported to projection mapping tools to display building surface textures on physical white building models. A case study using Revit and 3ds Max as the BIM software, and MadMapper as the projection mapping tool, was conducted to demonstrate the feasibility of the proposed framework and to evaluate the projection performance of SAR. The case study showed that the texture of BIM models could be projected on the objects clearly and realistically. Additionally, the proposed SAR method potentially offers intuitive observation of building models and comfortable wear-free experience for collaborative design, and the qualitative analysis by changing the parameters was conducted to test the different projection conditions. Since it is expected that the use of SAR can be promoted by overcoming the discussed technical limitations and possible solution application, this study aims to traceability provide the whole process of BIM-based SAR for architectural design collaboration.


2019 ◽  
Vol 31 (1) ◽  
pp. 139-146 ◽  
Author(s):  
Camilo A. Molina ◽  
Nicholas Theodore ◽  
A. Karim Ahmed ◽  
Erick M. Westbroek ◽  
Yigal Mirovsky ◽  
...  

OBJECTIVEAugmented reality (AR) is a novel technology that has the potential to increase the technical feasibility, accuracy, and safety of conventional manual and robotic computer-navigated pedicle insertion methods. Visual data are directly projected to the operator’s retina and overlaid onto the surgical field, thereby removing the requirement to shift attention to a remote display. The objective of this study was to assess the comparative accuracy of AR-assisted pedicle screw insertion in comparison to conventional pedicle screw insertion methods.METHODSFive cadaveric male torsos were instrumented bilaterally from T6 to L5 for a total of 120 inserted pedicle screws. Postprocedural CT scans were obtained, and screw insertion accuracy was graded by 2 independent neuroradiologists using both the Gertzbein scale (GS) and a combination of that scale and the Heary classification, referred to in this paper as the Heary-Gertzbein scale (HGS). Non-inferiority analysis was performed, comparing the accuracy to freehand, manual computer-navigated, and robotics-assisted computer-navigated insertion accuracy rates reported in the literature. User experience analysis was conducted via a user experience questionnaire filled out by operators after the procedures.RESULTSThe overall screw placement accuracy achieved with the AR system was 96.7% based on the HGS and 94.6% based on the GS. Insertion accuracy was non-inferior to accuracy reported for manual computer-navigated pedicle insertion based on both the GS and the HGS scores. When compared to accuracy reported for robotics-assisted computer-navigated insertion, accuracy achieved with the AR system was found to be non-inferior when assessed with the GS, but superior when assessed with the HGS. Last, accuracy results achieved with the AR system were found to be superior to results obtained with freehand insertion based on both the HGS and the GS scores. Accuracy results were not found to be inferior in any comparison. User experience analysis yielded “excellent” usability classification.CONCLUSIONSAR-assisted pedicle screw insertion is a technically feasible and accurate insertion method.


2021 ◽  
Vol 11 (15) ◽  
pp. 6881
Author(s):  
Calvin Chung Wai Keung ◽  
Jung In Kim ◽  
Qiao Min Ong

Virtual reality (VR) is quickly becoming the medium of choice for various architecture, engineering, and construction applications, such as design visualization, construction planning, and safety training. In particular, this technology offers an immersive experience to enhance the way architects review their design with team members. Traditionally, VR has used a desktop PC or workstation setup inside a room, yielding the risk of two users bump into each other while using multiuser VR (MUVR) applications. MUVR offers shared experiences that disrupt the conventional single-user VR setup, where multiple users can communicate and interact in the same virtual space, providing more realistic scenarios for architects in the design stage. However, this shared virtual environment introduces challenges regarding limited human locomotion and interactions, due to physical constraints of normal room spaces. This study thus presented a system framework that integrates MUVR applications into omnidirectional treadmills. The treadmills allow users an immersive walking experience in the simulated environment, without space constraints or hurt potentialities. A prototype was set up and tested in several scenarios by practitioners and students. The validated MUVR treadmill system aims to promote high-level immersion in architectural design review and collaboration.


2018 ◽  
Vol 5 ◽  
Author(s):  
Kaj Helin ◽  
Timo Kuula ◽  
Carlo Vizzi ◽  
Jaakko Karjalainen ◽  
Alla Vovk

Sign in / Sign up

Export Citation Format

Share Document