scholarly journals Biomechanical Effect of Various Tibial Bearing Materials in Uni-Compartmental Knee Arthroplasty Using Finite Element Analysis

2020 ◽  
Vol 10 (18) ◽  
pp. 6487
Author(s):  
Yoon Hae Kwak ◽  
Hyoung-Taek Hong ◽  
Yong-Gon Koh ◽  
Kyoung-Tak Kang

This paper aimed to evaluate the biomechanical effects of tibial bearing materials, from ultra-high-molecular-weight polyethylene (UHMWPE) to poly-ether-ether-ketone (PEEK) and carbon-fiber-reinforced poly-ether-ether-ketone (CFR-PEEK). The studies were conducted based on a validated finite element model. The geometry of the intact knee model was developed from computed tomography and magnetic resonance imaging of the left knee joint of a 37-year-old healthy male volunteer. Three different loading conditions, related to the loads applied in the experimental research, were applied to this study for model predictions and validation. The contact stress in the other compartments was under normal walking conditions. Also, stresses on five regions of the tibia bone were analyzed under normal walking conditions. The lowest contact stress between the lateral meniscus and tibial cartilage was achieved in the order of the use of CFR-PEEK, PEEK, and UHMWPE tibial bearings. Moreover, CFR-PEEK and PEEK tibial bearings indicated lower and greater stresses on cortical and trabecular bones, respectively, compared to the UHMWPE tibial bearing. These results show that CFR-PEEK can be used as a tibial bearing material as an alternative to UHMWPE, and such a change in the material may be a good method for reducing potential anteromedial pain.

2021 ◽  
Vol 33 (2) ◽  
pp. 1-9
Author(s):  
Ammar S Kadhum ◽  
Akram F Alhuwaizi

Background: Poly-ether-ether-ketone(PEEK) has been introduced to many dental fields. Recently it was tested as a retainer wire‎ following orthodontic treatment. This study aimed to investigate the effect of changing the bonding spot size and location on the performance of PEEK retainer wires. Methods: A biomechanical study involving four three-dimensional finite element models was performed. The basic model was with a 0.8 mm cylindrical cross-section PEEK wire, bonded at the center of the lingual surface of the mandibular incisors with 4 mm in diameter composite spots. Two other models were designed with 3 mm and 5 mm composite sizes. The last model was created with the composite bonding spot of the canine away from the center of the crown, closer to the lateral incisor. The linear displacement of the teeth, strains of the periodontal ligament, and stresses in PEEK wire and composite were evaluated. The data was numerically produced with color coded display by the software. Selected values were tabulated and compared among models. Results: The amount of linear displacement and strain was very low. Stresses in the wire and composite were affected by the size and position of the composite bonding spot. The safe limits were identified at 235 MPa for PEEK and 100 MPa for composite. The basic model had a von Mises stress in the PEEK wire of 122.09 MPa, and a maximum principal stress in the composite of 99.779 MPa. Both stresses were within the safe limits, which means a lower risk of failure in PEEK and composite. All other models had stresses that exceeded the safe limit of the composite. The 3 mm composite model was the only one that developed stresses in the wire more than the safe limits of PEEK. Conclusions: Within the limitations of this study, bonding PEEK wires with 4 mm bonding spots to the clinical crown center provided the best mechanical performance of the wires and spots; otherwise, the mechanical properties of the wire and composite would be affected and, therefore, might affect the retention process. Keywords: Retention, PEEK, Finite element analysis


Author(s):  
Danny Vogel ◽  
Christian Schulze ◽  
Henry Dempwolf ◽  
Daniel Kluess ◽  
Rainer Bader

After total hip arthroplasty, stress-shielding is a potential risk factor for aseptic loosening of acetabular cups made of metals. This might be avoided by the use of acetabular cups made of implant materials with lower stiffness. The purpose of this numerical study was to determine whether a modular acetabular cup with a shell made of poly-ether-ether-ketone or poly-ether-ether-ketone reinforced with carbon fibers might be an alternative to conventional metallic shells. Therefore, the press-fit implantation of modular cups with shells made of different materials (Ti6Al4V, poly-ether-ether-ketone, and poly-ether-ether-ketone reinforced with carbon fibers) and varying liner materials (ceramics and ultra-high-molecular-weight polyethylene) into an artificial bone cavity was simulated using finite element analysis. The shell material had a major impact on the radial shell deformation determined at the rim of the shell, ranging from 17.9 µm for titanium over 92.2 µm for poly-ether-ether-ketone reinforced with carbon fibers up to 475.9 µm for poly-ether-ether-ketone. Larger radial liner deformations (up to 618.4 µm) occurred in combination with the shells made of poly-ether-ether-ketone compared to titanium and poly-ether-ether-ketone reinforced with carbon fibers. Hence, it can be stated that conventional poly-ether-ether-ketone is not a suitable shell material for modular acetabular cups. However, the radial shell deformation can be reduced if the poly-ether-ether-ketone reinforced with carbon fiber material is used, while deformation of ceramic liners is similar to the deformation in combination with titanium shells.


Author(s):  
M Akay ◽  
N Asian

A fracture mechanics approach was applied to estimate the life of a prosthesis injection moulded from short carbon fibre reinforced poly ether ether ketone. Flexural modulus and strength, fracture toughness, fatigue endurance limit, fatigue crack growth rate and threshold stress intensity factor were determined. The dimensions of the test pieces were selected to yield fibre orientation and fibre length distributions similar to those obtained in the prosthesis. Stress levels generated in the prosthesis under different activities were estimated by conducting three-dimensional finite element analysis. It was shown by a fracture mechanics approach that a fatigue failure due to the propagation of an embedded elliptical slit, under these stresses, would be unlikely for a crack length smaller than 1.85 mm. However, the cement would fail under the same conditions, irrespective of the type of the prosthesis employed.


2020 ◽  
pp. 088532822098119
Author(s):  
Liang Liu ◽  
Hong-yun Ma ◽  
Qi-ling Yuan ◽  
Xiao-ming Zhao ◽  
Xiao-xiao Lou ◽  
...  

Background Laminectomy is a traditional method for treating lumbar diseases; however, the destruction of the posterior structures may cause postoperative symptoms. An individualized poly-ether-ether-ketone (PEEK) artificial lamina was designed to reconstruct the posterior structures after laminectomy. This study aimed to explore the biomechanical effects of reconstruction of the posterior structures with an individualized PEEK artificial lamina using validated finite element models. Objective To examine the biomechanical effects of individualized PEEK artificial lamina on postlaminectomy lumbar. Methods A finite element (FE) model of L3-5 was developed based on computed tomography images. Four surgical models (laminectomy, artificial lamina alone, ligament reconstruction, and osseointegration) were constructed, representing different stages of L4 artificial lamina implantation. The range of motion (ROM), intradiscal pressure (IDP), stresses in the annulus fibrosus at the surgical level and cephalad adjacent level, and stresses in the artificial lamina and screws were measured. Results The ROM, IDP, and stresses in the annulus fibrosus of the different artificial lamina models decreased compared to those of the laminectomy model at both surgical and adjacent levels for all motion patterns, most notably in the osseointegration model. In addition, the results of the stresses in the implants showed that the artificial lamina could enhance the lumbar isthmus and disperse the abnormally concentrated stresses after laminectomy. Conclusion The application of a PEEK artificial lamina has the potential to stabilize the postlaminectomy lumbar spine and prevent adjacent segment disease (ASD) and iatrogenic lumbar deformities, resulting in a reduction in the incidence of post-lumbar surgery syndrome.


2011 ◽  
Vol 314-316 ◽  
pp. 1218-1221
Author(s):  
Hao Min Huang

Conventional methods of design to be completed ordinary hydraulic transmission gear gearbox design, but for such a non-planet-rule entity, and the deformation of the planet-gear contact stress will have a great impact on the planet gear, it will be very difficult According to conventional design. In this paper, ANSYS software to the situation finite element analysis, the planetary gear to simulate modeling study.


2021 ◽  
Vol 56 (18) ◽  
pp. 11174-11185
Author(s):  
Xin Cong ◽  
Jiannan Ren ◽  
Chunhui Xiang ◽  
Xuzhao Gai ◽  
Guibin Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document