scholarly journals Towards the Natural Language Processing as Spelling Correction for Offline Handwritten Text Recognition Systems

2020 ◽  
Vol 10 (21) ◽  
pp. 7711
Author(s):  
Arthur Flor de Sousa Neto ◽  
Byron Leite Dantas Bezerra ◽  
Alejandro Héctor Toselli

The increasing portability of physical manuscripts to the digital environment makes it common for systems to offer automatic mechanisms for offline Handwritten Text Recognition (HTR). However, several scenarios and writing variations bring challenges in recognition accuracy, and, to minimize this problem, optical models can be used with language models to assist in decoding text. Thus, with the aim of improving results, dictionaries of characters and words are generated from the dataset and linguistic restrictions are created in the recognition process. In this way, this work proposes the use of spelling correction techniques for text post-processing to achieve better results and eliminate the linguistic dependence between the optical model and the decoding stage. In addition, an encoder–decoder neural network architecture in conjunction with a training methodology are developed and presented to achieve the goal of spelling correction. To demonstrate the effectiveness of this new approach, we conducted an experiment on five datasets of text lines, widely known in the field of HTR, three state-of-the-art Optical Models for text recognition and eight spelling correction techniques, among traditional statistics and current approaches of neural networks in the field of Natural Language Processing (NLP). Finally, our proposed spelling correction model is analyzed statistically through HTR system metrics, reaching an average sentence correction of 54% higher than the state-of-the-art method of decoding in the tested datasets.

2021 ◽  
Author(s):  
Oscar Nils Erik Kjell ◽  
H. Andrew Schwartz ◽  
Salvatore Giorgi

The language that individuals use for expressing themselves contains rich psychological information. Recent significant advances in Natural Language Processing (NLP) and Deep Learning (DL), namely transformers, have resulted in large performance gains in tasks related to understanding natural language such as machine translation. However, these state-of-the-art methods have not yet been made easily accessible for psychology researchers, nor designed to be optimal for human-level analyses. This tutorial introduces text (www.r-text.org), a new R-package for analyzing and visualizing human language using transformers, the latest techniques from NLP and DL. Text is both a modular solution for accessing state-of-the-art language models and an end-to-end solution catered for human-level analyses. Hence, text provides user-friendly functions tailored to test hypotheses in social sciences for both relatively small and large datasets. This tutorial describes useful methods for analyzing text, providing functions with reliable defaults that can be used off-the-shelf as well as providing a framework for the advanced users to build on for novel techniques and analysis pipelines. The reader learns about six methods: 1) textEmbed: to transform text to traditional or modern transformer-based word embeddings (i.e., numeric representations of words); 2) textTrain: to examine the relationships between text and numeric/categorical variables; 3) textSimilarity and 4) textSimilarityTest: to computing semantic similarity scores between texts and significance test the difference in meaning between two sets of texts; and 5) textProjection and 6) textProjectionPlot: to examine and visualize text within the embedding space according to latent or specified construct dimensions (e.g., low to high rating scale scores).


2021 ◽  
Author(s):  
Tong Guo

Recently, the development of pre-trained language models has brought natural language processing (NLP) tasks to the new state-of-the-art. In this paper we explore the efficiency of various pre-trained language models. We pre-train a list of transformer-based models with the same amount of text and the same training steps. The experimental results shows that the most improvement upon the origin BERT is adding the RNN-layer to capture more contextual information for the transformer-encoder layers.


2021 ◽  
Vol 7 (12) ◽  
pp. 260
Author(s):  
Lazaros Tsochatzidis ◽  
Symeon Symeonidis ◽  
Alexandros Papazoglou ◽  
Ioannis Pratikakis

Offline handwritten text recognition (HTR) for historical documents aims for effective transcription by addressing challenges that originate from the low quality of manuscripts under study as well as from several particularities which are related to the historical period of writing. In this paper, the challenge in HTR is related to a focused goal of the transcription of Greek historical manuscripts that contain several particularities. To this end, in this paper, a convolutional recurrent neural network architecture is proposed that comprises octave convolution and recurrent units which use effective gated mechanisms. The proposed architecture has been evaluated on three newly created collections from Greek historical handwritten documents that will be made publicly available for research purposes as well as on standard datasets like IAM and RIMES. For evaluation we perform a concise study which shows that compared to state of the art architectures, the proposed one deals effectively with the challenging Greek historical manuscripts.


Author(s):  
Claudia Kittask ◽  
Kirill Milintsevich ◽  
Kairit Sirts

Recently, large pre-trained language models, such as BERT, have reached state-of-the-art performance in many natural language processing tasks, but for many languages, including Estonian, BERT models are not yet available. However, there exist several multilingual BERT models that can handle multiple languages simultaneously and that have been trained also on Estonian data. In this paper, we evaluate four multilingual models—multilingual BERT, multilingual distilled BERT, XLM and XLM-RoBERTa—on several NLP tasks including POS and morphological tagging, NER and text classification. Our aim is to establish a comparison between these multilingual BERT models and the existing baseline neural models for these tasks. Our results show that multilingual BERT models can generalise well on different Estonian NLP tasks outperforming all baselines models for POS and morphological tagging and text classification, and reaching the comparable level with the best baseline for NER, with XLM-RoBERTa achieving the highest results compared with other multilingual models.


2021 ◽  
Author(s):  
Tong Guo

Recently, the development of pre-trained language models has brought natural language processing (NLP) tasks to the new state-of-the-art. In this paper we explore the efficiency of various pre-trained language models. We pre-train a list of transformer-based models with the same amount of text and the same training steps. The experimental results shows that the most improvement upon the origin BERT is adding the RNN-layer to capture more contextual information for the transformer-encoder layers.


2022 ◽  
Vol 3 (1) ◽  
pp. 1-23
Author(s):  
Yu Gu ◽  
Robert Tinn ◽  
Hao Cheng ◽  
Michael Lucas ◽  
Naoto Usuyama ◽  
...  

Pretraining large neural language models, such as BERT, has led to impressive gains on many natural language processing (NLP) tasks. However, most pretraining efforts focus on general domain corpora, such as newswire and Web. A prevailing assumption is that even domain-specific pretraining can benefit by starting from general-domain language models. In this article, we challenge this assumption by showing that for domains with abundant unlabeled text, such as biomedicine, pretraining language models from scratch results in substantial gains over continual pretraining of general-domain language models. To facilitate this investigation, we compile a comprehensive biomedical NLP benchmark from publicly available datasets. Our experiments show that domain-specific pretraining serves as a solid foundation for a wide range of biomedical NLP tasks, leading to new state-of-the-art results across the board. Further, in conducting a thorough evaluation of modeling choices, both for pretraining and task-specific fine-tuning, we discover that some common practices are unnecessary with BERT models, such as using complex tagging schemes in named entity recognition. To help accelerate research in biomedical NLP, we have released our state-of-the-art pretrained and task-specific models for the community, and created a leaderboard featuring our BLURB benchmark (short for Biomedical Language Understanding & Reasoning Benchmark) at https://aka.ms/BLURB .


2021 ◽  
Author(s):  
Tong Guo

Recently, the development of pre-trained language models has brought natural language processing (NLP) tasks to the new state-of-the-art. In this paper we explore the efficiency of various pre-trained language models. We pre-train a list of transformer-based models with the same amount of text and the same training steps. The experimental results shows that the most improvement upon the origin BERT is adding the RNN-layer to capture more contextual information for the transformer-encoder layers.


Author(s):  
Nisrine Ait Khayi ◽  
Vasile Rus ◽  
Lasang Tamang

The transfer learning pretraining-finetuning  paradigm has revolutionized the natural language processing field yielding state-of the art results in  several subfields such as text classification and question answering. However, little work has been done investigating pretrained language models for the  open student answer assessment task. In this paper, we fine tune pretrained T5, BERT, RoBERTa, DistilBERT, ALBERT and XLNet models on the DT-Grade dataset which contains freely generated (or open) student answers together with judgment of their correctness. The experimental results demonstrated the effectiveness of these models based on the transfer learning pretraining-finetuning paradigm for open student answer assessment. An improvement of 8%-15% in accuracy was obtained over previous methods. Particularly, a T5 based method led to state-of-the-art results with an accuracy and F1 score of 0.88.


2019 ◽  
Vol 53 (2) ◽  
pp. 3-10
Author(s):  
Muthu Kumar Chandrasekaran ◽  
Philipp Mayr

The 4 th joint BIRNDL workshop was held at the 42nd ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR 2019) in Paris, France. BIRNDL 2019 intended to stimulate IR researchers and digital library professionals to elaborate on new approaches in natural language processing, information retrieval, scientometrics, and recommendation techniques that can advance the state-of-the-art in scholarly document understanding, analysis, and retrieval at scale. The workshop incorporated different paper sessions and the 5 th edition of the CL-SciSumm Shared Task.


2020 ◽  
Vol 6 ◽  
Author(s):  
David Owen ◽  
Laurence Livermore ◽  
Quentin Groom ◽  
Alex Hardisty ◽  
Thijs Leegwater ◽  
...  

We describe an effective approach to automated text digitisation with respect to natural history specimen labels. These labels contain much useful data about the specimen including its collector, country of origin, and collection date. Our approach to automatically extracting these data takes the form of a pipeline. Recommendations are made for the pipeline's component parts based on some of the state-of-the-art technologies. Optical Character Recognition (OCR) can be used to digitise text on images of specimens. However, recognising text quickly and accurately from these images can be a challenge for OCR. We show that OCR performance can be improved by prior segmentation of specimen images into their component parts. This ensures that only text-bearing labels are submitted for OCR processing as opposed to whole specimen images, which inevitably contain non-textual information that may lead to false positive readings. In our testing Tesseract OCR version 4.0.0 offers promising text recognition accuracy with segmented images. Not all the text on specimen labels is printed. Handwritten text varies much more and does not conform to standard shapes and sizes of individual characters, which poses an additional challenge for OCR. Recently, deep learning has allowed for significant advances in this area. Google's Cloud Vision, which is based on deep learning, is trained on large-scale datasets, and is shown to be quite adept at this task. This may take us some way towards negating the need for humans to routinely transcribe handwritten text. Determining the countries and collectors of specimens has been the goal of previous automated text digitisation research activities. Our approach also focuses on these two pieces of information. An area of Natural Language Processing (NLP) known as Named Entity Recognition (NER) has matured enough to semi-automate this task. Our experiments demonstrated that existing approaches can accurately recognise location and person names within the text extracted from segmented images via Tesseract version 4.0.0. Potentially, NER could be used in conjunction with other online services, such as those of the Biodiversity Heritage Library to map the named entities to entities in the biodiversity literature (https://www.biodiversitylibrary.org/docs/api3.html). We have highlighted the main recommendations for potential pipeline components. The document also provides guidance on selecting appropriate software solutions. These include automatic language identification, terminology extraction, and integrating all pipeline components into a scientific workflow to automate the overall digitisation process.


Sign in / Sign up

Export Citation Format

Share Document