scholarly journals A Comprehensive Exploration of Pre-training Language Models

Author(s):  
Tong Guo

Recently, the development of pre-trained language models has brought natural language processing (NLP) tasks to the new state-of-the-art. In this paper we explore the efficiency of various pre-trained language models. We pre-train a list of transformer-based models with the same amount of text and the same training steps. The experimental results shows that the most improvement upon the origin BERT is adding the RNN-layer to capture more contextual information for the transformer-encoder layers.

2021 ◽  
Author(s):  
Tong Guo

Recently, the development of pre-trained language models has brought natural language processing (NLP) tasks to the new state-of-the-art. In this paper we explore the efficiency of various pre-trained language models. We pre-train a list of transformer-based models with the same amount of text and the same training steps. The experimental results shows that the most improvement upon the origin BERT is adding the RNN-layer to capture more contextual information for the transformer-encoder layers.


2021 ◽  
Author(s):  
Tong Guo

Recently, the development of pre-trained language models has brought natural language processing (NLP) tasks to the new state-of-the-art. In this paper we explore the efficiency of various pre-trained language models. We pre-train a list of transformer-based models with the same amount of text and the same training steps. The experimental results shows that the most improvement upon the origin BERT is adding the RNN-layer to capture more contextual information for the transformer-encoder layers.


2021 ◽  
Author(s):  
Oscar Nils Erik Kjell ◽  
H. Andrew Schwartz ◽  
Salvatore Giorgi

The language that individuals use for expressing themselves contains rich psychological information. Recent significant advances in Natural Language Processing (NLP) and Deep Learning (DL), namely transformers, have resulted in large performance gains in tasks related to understanding natural language such as machine translation. However, these state-of-the-art methods have not yet been made easily accessible for psychology researchers, nor designed to be optimal for human-level analyses. This tutorial introduces text (www.r-text.org), a new R-package for analyzing and visualizing human language using transformers, the latest techniques from NLP and DL. Text is both a modular solution for accessing state-of-the-art language models and an end-to-end solution catered for human-level analyses. Hence, text provides user-friendly functions tailored to test hypotheses in social sciences for both relatively small and large datasets. This tutorial describes useful methods for analyzing text, providing functions with reliable defaults that can be used off-the-shelf as well as providing a framework for the advanced users to build on for novel techniques and analysis pipelines. The reader learns about six methods: 1) textEmbed: to transform text to traditional or modern transformer-based word embeddings (i.e., numeric representations of words); 2) textTrain: to examine the relationships between text and numeric/categorical variables; 3) textSimilarity and 4) textSimilarityTest: to computing semantic similarity scores between texts and significance test the difference in meaning between two sets of texts; and 5) textProjection and 6) textProjectionPlot: to examine and visualize text within the embedding space according to latent or specified construct dimensions (e.g., low to high rating scale scores).


2021 ◽  
pp. 1-13
Author(s):  
Deguang Chen ◽  
Ziping Ma ◽  
Lin Wei ◽  
Yanbin Zhu ◽  
Jinlin Ma ◽  
...  

Text-based reading comprehension models have great research significance and market value and are one of the main directions of natural language processing. Reading comprehension models of single-span answers have recently attracted more attention and achieved significant results. In contrast, multi-span answer models for reading comprehension have been less investigated and their performances need improvement. To address this issue, in this paper, we propose a text-based multi-span network for reading comprehension, ALBERT_SBoundary, and build a multi-span answer corpus, MultiSpan_NMU. We also conduct extensive experiments on the public multi-span corpus, MultiSpan_DROP, and our multi-span answer corpus, MultiSpan_NMU, and compare the proposed method with the state-of-the-art. The experimental results show that our proposed method achieves F1 scores of 84.10 and 92.88 on MultiSpan_DROP and MultiSpan_NMU datasets, respectively, while it also has fewer parameters and a shorter training time.


2013 ◽  
Vol 21 (1) ◽  
pp. 113-138 ◽  
Author(s):  
MUHUA ZHU ◽  
JINGBO ZHU ◽  
HUIZHEN WANG

AbstractShift-reduce parsing has been studied extensively for diverse grammars due to the simplicity and running efficiency. However, in the field of constituency parsing, shift-reduce parsers lag behind state-of-the-art parsers. In this paper we propose a semi-supervised approach for advancing shift-reduce constituency parsing. First, we apply the uptraining approach (Petrov, S. et al. 2010. In Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing (EMNLP), Cambridge, MA, USA, pp. 705–713) to improve part-of-speech taggers to provide better part-of-speech tags to subsequent shift-reduce parsers. Second, we enhance shift-reduce parsing models with novel features that are defined on lexical dependency information. Both stages depend on the use of large-scale unlabeled data. Experimental results show that the approach achieves overall improvements of 1.5 percent and 2.1 percent on English and Chinese data respectively. Moreover, the final parsing accuracies reach 90.9 percent and 82.2 percent respectively, which are comparable with the accuracy of state-of-the-art parsers.


Author(s):  
Claudia Kittask ◽  
Kirill Milintsevich ◽  
Kairit Sirts

Recently, large pre-trained language models, such as BERT, have reached state-of-the-art performance in many natural language processing tasks, but for many languages, including Estonian, BERT models are not yet available. However, there exist several multilingual BERT models that can handle multiple languages simultaneously and that have been trained also on Estonian data. In this paper, we evaluate four multilingual models—multilingual BERT, multilingual distilled BERT, XLM and XLM-RoBERTa—on several NLP tasks including POS and morphological tagging, NER and text classification. Our aim is to establish a comparison between these multilingual BERT models and the existing baseline neural models for these tasks. Our results show that multilingual BERT models can generalise well on different Estonian NLP tasks outperforming all baselines models for POS and morphological tagging and text classification, and reaching the comparable level with the best baseline for NER, with XLM-RoBERTa achieving the highest results compared with other multilingual models.


Author(s):  
Ningyu Zhang ◽  
Shumin Deng ◽  
Xu Cheng ◽  
Xi Chen ◽  
Yichi Zhang ◽  
...  

Previous research has demonstrated the power of leveraging prior knowledge to improve the performance of deep models in natural language processing. However, traditional methods neglect the fact that redundant and irrelevant knowledge exists in external knowledge bases. In this study, we launched an in-depth empirical investigation into downstream tasks and found that knowledge-enhanced approaches do not always exhibit satisfactory improvements. To this end, we investigate the fundamental reasons for ineffective knowledge infusion and present selective injection for language pretraining, which constitutes a model-agnostic method and is readily pluggable into previous approaches. Experimental results on benchmark datasets demonstrate that our approach can enhance state-of-the-art knowledge injection methods.


2020 ◽  
Vol 10 (21) ◽  
pp. 7711
Author(s):  
Arthur Flor de Sousa Neto ◽  
Byron Leite Dantas Bezerra ◽  
Alejandro Héctor Toselli

The increasing portability of physical manuscripts to the digital environment makes it common for systems to offer automatic mechanisms for offline Handwritten Text Recognition (HTR). However, several scenarios and writing variations bring challenges in recognition accuracy, and, to minimize this problem, optical models can be used with language models to assist in decoding text. Thus, with the aim of improving results, dictionaries of characters and words are generated from the dataset and linguistic restrictions are created in the recognition process. In this way, this work proposes the use of spelling correction techniques for text post-processing to achieve better results and eliminate the linguistic dependence between the optical model and the decoding stage. In addition, an encoder–decoder neural network architecture in conjunction with a training methodology are developed and presented to achieve the goal of spelling correction. To demonstrate the effectiveness of this new approach, we conducted an experiment on five datasets of text lines, widely known in the field of HTR, three state-of-the-art Optical Models for text recognition and eight spelling correction techniques, among traditional statistics and current approaches of neural networks in the field of Natural Language Processing (NLP). Finally, our proposed spelling correction model is analyzed statistically through HTR system metrics, reaching an average sentence correction of 54% higher than the state-of-the-art method of decoding in the tested datasets.


2022 ◽  
Vol 3 (1) ◽  
pp. 1-23
Author(s):  
Yu Gu ◽  
Robert Tinn ◽  
Hao Cheng ◽  
Michael Lucas ◽  
Naoto Usuyama ◽  
...  

Pretraining large neural language models, such as BERT, has led to impressive gains on many natural language processing (NLP) tasks. However, most pretraining efforts focus on general domain corpora, such as newswire and Web. A prevailing assumption is that even domain-specific pretraining can benefit by starting from general-domain language models. In this article, we challenge this assumption by showing that for domains with abundant unlabeled text, such as biomedicine, pretraining language models from scratch results in substantial gains over continual pretraining of general-domain language models. To facilitate this investigation, we compile a comprehensive biomedical NLP benchmark from publicly available datasets. Our experiments show that domain-specific pretraining serves as a solid foundation for a wide range of biomedical NLP tasks, leading to new state-of-the-art results across the board. Further, in conducting a thorough evaluation of modeling choices, both for pretraining and task-specific fine-tuning, we discover that some common practices are unnecessary with BERT models, such as using complex tagging schemes in named entity recognition. To help accelerate research in biomedical NLP, we have released our state-of-the-art pretrained and task-specific models for the community, and created a leaderboard featuring our BLURB benchmark (short for Biomedical Language Understanding & Reasoning Benchmark) at https://aka.ms/BLURB .


Author(s):  
Nisrine Ait Khayi ◽  
Vasile Rus ◽  
Lasang Tamang

The transfer learning pretraining-finetuning  paradigm has revolutionized the natural language processing field yielding state-of the art results in  several subfields such as text classification and question answering. However, little work has been done investigating pretrained language models for the  open student answer assessment task. In this paper, we fine tune pretrained T5, BERT, RoBERTa, DistilBERT, ALBERT and XLNet models on the DT-Grade dataset which contains freely generated (or open) student answers together with judgment of their correctness. The experimental results demonstrated the effectiveness of these models based on the transfer learning pretraining-finetuning paradigm for open student answer assessment. An improvement of 8%-15% in accuracy was obtained over previous methods. Particularly, a T5 based method led to state-of-the-art results with an accuracy and F1 score of 0.88.


Sign in / Sign up

Export Citation Format

Share Document