scholarly journals Hybrid GA-SOCP Approach for Placement and Sizing of Distributed Generators in DC Networks

2020 ◽  
Vol 10 (23) ◽  
pp. 8616 ◽  
Author(s):  
Oscar Danilo Montoya ◽  
Walter Gil-González ◽  
Luis Fernando Grisales-Noreña

This research addresses the problem of the optimal location and sizing distributed generators (DGs) in direct current (DC) distribution networks from the combinatorial optimization. It is proposed a master–slave optimization approach in order to solve the problems of placement and location of DGs, respectively. The master stage applies to the classical Chu & Beasley genetic algorithm (GA), while the slave stage resolves a second-order cone programming reformulation of the optimal power flow problem for DC grids. This master–slave approach generates a hybrid optimization approach, named GA-SOCP. The main advantage of optimal dimensioning of DGs via SOCP is that this method makes part of the exact mathematical optimization that guarantees the possibility of finding the global optimal solution due to the solution space’s convex structure, which is a clear improvement regarding classical metaheuristic optimization methodologies. Numerical comparisons with hybrid and exact optimization approaches reported in the literature demonstrate the proposed hybrid GA-SOCP approach’s effectiveness and robustness to achieve the global optimal solution. Two test feeders compose of 21 and 69 nodes that can locate three distributed generators are considered. All of the computational validations have been carried out in the MATLAB software and the CVX tool for convex optimization.

2014 ◽  
Vol 1070-1072 ◽  
pp. 809-814
Author(s):  
Lei Dong ◽  
Ai Zhong Tian ◽  
Tian Jiao Pu ◽  
Zheng Fan ◽  
Ting Yu

Reactive power optimization for distribution network with distributed generators is a complicated nonconvex nonlinear mixed integer programming problem. This paper built a mathematical model of reactive power optimization for distribution network and a new method to solve this problem was proposed based on semi-definite programming. The original mathematical model was transformed and relaxed into a convex SDP model, to guarantee the global optimal solution within the polynomial times. Then the model was extended to a mixed integer semi-definite programming model with discrete variables when considering discrete compensation equipment such as capacitor banks. Global optimal solution of this model can be obtained by cutting plane method and branch and bound method. Numerical tests on the modified IEEE 33-bus system show this method is exact and can be solved efficiently.


Electronics ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 26 ◽  
Author(s):  
Oscar Danilo Montoya ◽  
Alexander Molina-Cabrera ◽  
Harold R. Chamorro ◽  
Lazaro Alvarado-Barrios ◽  
Edwin Rivas-Trujillo

This paper deals with the problem of the optimal placement and sizing of distributed generators (DGs) in alternating current (AC) distribution networks by proposing a hybrid master–slave optimization procedure. In the master stage, the discrete version of the sine–cosine algorithm (SCA) determines the optimal location of the DGs, i.e., the nodes where these must be located, by using an integer codification. In the slave stage, the problem of the optimal sizing of the DGs is solved through the implementation of the second-order cone programming (SOCP) equivalent model to obtain solutions for the resulting optimal power flow problem. As the main advantage, the proposed approach allows converting the original mixed-integer nonlinear programming formulation into a mixed-integer SOCP equivalent. That is, each combination of nodes provided by the master level SCA algorithm to locate distributed generators brings an optimal solution in terms of its sizing; since SOCP is a convex optimization model that ensures the global optimum finding. Numerical validations of the proposed hybrid SCA-SOCP to optimal placement and sizing of DGs in AC distribution networks show its capacity to find global optimal solutions. Some classical distribution networks (33 and 69 nodes) were tested, and some comparisons were made using reported results from literature. In addition, simulation cases with unity and variable power factor are made, including the possibility of locating photovoltaic sources considering daily load and generation curves. All the simulations were carried out in the MATLAB software using the CVX optimization tool.


2021 ◽  
Vol 11 (2) ◽  
pp. 627
Author(s):  
Walter Gil-González ◽  
Alejandro Garces ◽  
Oscar Danilo Montoya ◽  
Jesus C. Hernández

The optimal placement and sizing of distributed generators is a classical problem in power distribution networks that is usually solved using heuristic algorithms due to its high complexity. This paper proposes a different approach based on a mixed-integer second-order cone programming (MI-SOCP) model that ensures the global optimum of the relaxed optimization model. Second-order cone programming (SOCP) has demonstrated to be an efficient alternative to cope with the non-convexity of the power flow equations in power distribution networks. Of relatively new interest to the power systems community is the extension to MI-SOCP models. The proposed model is an approximation. However, numerical validations in the IEEE 33-bus and IEEE 69-bus test systems for unity and variable power factor confirm that the proposed MI-SOCP finds the best solutions reported in the literature. Being an exact technique, the proposed model allows minimum processing times and zero standard deviation, i.e., the same optimum is guaranteed at each time that the MI-SOCP model is solved (a significant advantage in comparison to metaheuristics). Additionally, load and photovoltaic generation curves for the IEEE 69-node test system are included to demonstrate the applicability of the proposed MI-SOCP to solve the problem of the optimal location and sizing of renewable generators using the multi-period optimal power flow formulation. Therefore, the proposed MI-SOCP also guarantees the global optimum finding, in contrast to local solutions achieved with mixed-integer nonlinear programming solvers available in the GAMS optimization software. All the simulations were carried out via MATLAB software with the CVX package and Gurobi solver.


2002 ◽  
Vol 12 (05) ◽  
pp. 1163-1172 ◽  
Author(s):  
YU-PING TIAN

In this paper, a novel method for locating and stabilizing inherent unstable periodic orbits (UPOs) in chaotic systems is proposed. The main idea of the method is to formulate the UPO locating problem as an optimization issue by using some inherent properties of UPOs of chaotic systems. The global optimal solution of this problem yields the desired UPO. To avoid a local optimal solution, the state of the controlled chaotic system is absorbed into the initial condition of the optimization problem. The ergodicity of chaotic dynamics guarantees that the optimization process does not stay forever at any local optimal solution. When the chaotic orbit approaches the global optimal solution, which is the desired UPO, the controller will stabilize it at the UPO, and the optimization process will cease simultaneously. The method has been developed for both discrete-time and continuous-time systems, and validated for some typical chaotic systems such as the Hénon map and the Duffing oscillator, among others.


2019 ◽  
Vol 19 (2) ◽  
pp. 139-145 ◽  
Author(s):  
Bote Lv ◽  
Juan Chen ◽  
Boyan Liu ◽  
Cuiying Dong

<P>Introduction: It is well-known that the biogeography-based optimization (BBO) algorithm lacks searching power in some circumstances. </P><P> Material & Methods: In order to address this issue, an adaptive opposition-based biogeography-based optimization algorithm (AO-BBO) is proposed. Based on the BBO algorithm and opposite learning strategy, this algorithm chooses different opposite learning probabilities for each individual according to the habitat suitability index (HSI), so as to avoid elite individuals from returning to local optimal solution. Meanwhile, the proposed method is tested in 9 benchmark functions respectively. </P><P> Result: The results show that the improved AO-BBO algorithm can improve the population diversity better and enhance the search ability of the global optimal solution. The global exploration capability, convergence rate and convergence accuracy have been significantly improved. Eventually, the algorithm is applied to the parameter optimization of soft-sensing model in plant medicine extraction rate. Conclusion: The simulation results show that the model obtained by this method has higher prediction accuracy and generalization ability.</P>


2021 ◽  
Vol 13 (10) ◽  
pp. 5752
Author(s):  
Reza Sabzehgar ◽  
Diba Zia Amirhosseini ◽  
Saeed D. Manshadi ◽  
Poria Fajri

This work aims to minimize the cost of installing renewable energy resources (photovoltaic systems) as well as energy storage systems (batteries), in addition to the cost of operation over a period of 20 years, which will include the cost of operating the power grid and the charging and discharging of the batteries. To this end, we propose a long-term planning optimization and expansion framework for a smart distribution network. A second order cone programming (SOCP) algorithm is utilized in this work to model the power flow equations. The minimization is computed in accordance to the years (y), seasons (s), days of the week (d), time of the day (t), and different scenarios based on the usage of energy and its production (c). An IEEE 33-bus balanced distribution test bench is utilized to evaluate the performance, effectiveness, and reliability of the proposed optimization and forecasting model. The numerical studies are conducted on two of the highest performing batteries in the current market, i.e., Lithium-ion (Li-ion) and redox flow batteries (RFBs). In addition, the pros and cons of distributed Li-ion batteries are compared with centralized RFBs. The results are presented to showcase the economic profits of utilizing these battery technologies.


Sign in / Sign up

Export Citation Format

Share Document