scholarly journals Robust Geometries for Second-Harmonic-Generation in Microrings Exhibiting a 4-Bar Symmetry

2020 ◽  
Vol 10 (24) ◽  
pp. 9047
Author(s):  
Pierre Guillemé ◽  
Chiara Vecchi ◽  
Claudio Castellan ◽  
Stefano Signorini ◽  
Mher Ghulinyan ◽  
...  

Microring resonators made of materials with a zinc-blend or diamond lattice allow exploiting their 4-bar symmetry to achieve quasi-phase matching condition for second-order optical nonlinearities. However, fabrication tolerances impose severe limits on the quasi-phase matching condition, which in turn degrades the generation efficiency. Here, we present a method to mitigate these limitations. As an example, we studied the geometry and the pump wavelength conditions to induce the second-harmonic generation in silicon-based microrings with a second-order susceptibility χzxy(2)≠0. We found the best compromises between performances and experimental requirements, and we unveil a strategy to minimize the impacts of fabrication defects. The method can be easily transferred to other material systems.


2016 ◽  
Vol 30 (22) ◽  
pp. 1650138
Author(s):  
Mahboubeh Ghalandari

Because of the importance of second harmonic generation (SHG) in some nonlinear media, in this paper, we investigated induced SHG in diamond where there is no intrinsic second-order susceptibility, [Formula: see text]. The electric field is proposed to introduce moving susceptibility of the second-order and induce second harmonic generation. Then, spatiotemporal quasi-phase matching (QPM) is applied to optimize the induced SHG. Numerical results reveal that in this way, the induced second harmonic is found at the frequency of [Formula: see text] rather than [Formula: see text].



Nanophotonics ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Jicheng Jin ◽  
Jian Lu ◽  
Bo Zhen

Abstract Second harmonic generation through nonlinear nano-photonic structures is important in both classical and quantum applications. It is commonly expected that the second harmonic frequency can always be generated as long as appropriate quadratic nonlinearity is provided by the material and the phase-matching condition is satisfied. Here, we present an anomaly to this common wisdom by showing that second-harmonic dipoles generated in a nonlinear photonic crystal slab can be completely nonradiative. As a result, no energy is transferred from the fundamental frequency to the second harmonic even when the phase-matching condition is satisfied – a phenomenon we call “resonance-forbidden second-harmonic generation”. Through numerical simulation, we identify two mechanisms that can achieve this phenomenon: symmetry protection and parameter tuning. The finite-size effect and the topological origin of this phenomenon are also discussed.



Nanophotonics ◽  
2019 ◽  
Vol 8 (4) ◽  
pp. 607-612 ◽  
Author(s):  
S. Hamed Shams Mousavi ◽  
Robert Lemasters ◽  
Feng Wang ◽  
Ali Eshaghian Dorche ◽  
Hossein Taheri ◽  
...  

AbstractThe phase matching between the propagating fundamental and nonlinearly generated waves plays an important role in the efficiency of the nonlinear frequency conversion in macroscopic crystals. However, in nanoscale samples, such as nanoplasmonic structures, the phase-matching condition is often ignored due to the sub-wavelength nature of the materials. Here, we first show that the phase matching of the lattice plasmon modes at the fundamental and second-harmonic frequencies in a plasmonic nanoantenna array can effectively enhance the surface-enhanced second-harmonic generation. Additionally, a significant enhancement of the second-harmonic generation is demonstrated using stationary band-edge lattice plasmon modes with zero phase.



2009 ◽  
Vol 94 (15) ◽  
pp. 151107 ◽  
Author(s):  
Sean J. Wagner ◽  
Barry M. Holmes ◽  
Usman Younis ◽  
Amr S. Helmy ◽  
J. Stewart Aitchison ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document