scholarly journals Adaptive Semi-Active Suspension and Cruise Control through LPV Technique

2020 ◽  
Vol 11 (1) ◽  
pp. 290
Author(s):  
Hakan Basargan ◽  
András Mihály ◽  
Péter Gáspár ◽  
Olivier Sename

Several studies exist on topics of semi-active suspension and vehicle cruise control systems in the literature, while many of them just consider actual road distortions and terrain characteristics, these systems are not adaptive and their subsystems designed separately. This study introduces a new method where the integration of look-ahead road data in the control of the adaptive semi-active suspension, where it is possible to the trade-off between comfort and stability orientation. This trade-off is designed by the decision layer, where the controller is modified based on prehistorical passive suspension simulations, vehicle velocity and road data, while the behavior of the controller can be modified by the use of a dedicated scheduling variable. The adaptive semi-active suspension control is designed by using Linear Parameter Varying (LPV) framework. In addition to this, it proposes designing the vehicle velocity for the cruise controller by considering energy efficiency and comfort together. TruckSim environment is used to validate the operation of the proposed integrated cruise and semi-active suspension control system.

2017 ◽  
Vol 50 (1) ◽  
pp. 8592-8599 ◽  
Author(s):  
Michael Fleps-Dezasse ◽  
Ferdinand Svaricek ◽  
Jonathan Brembeck

Author(s):  
Chih-Jer Lin ◽  
Wan-Quan Xu

This paper presents a complete analysis of the cruise control and the active suspension control for the high speed train (HST). For a train system, the system are designed to being safe and reliable with high efficiency and fault tolerance; however, users require faster, more stable and more comfort transportation. To make sure the safety at such high speed, automatic train control (ATC) is needed and used for the modern HST to guarantee the safety and monitor the cruise status. For HST, the conventional (passive) suspension techniques have reached the limit of its optimization and development; therefore, the active suspension system is necessary for HST to obtain better comfort. In this paper, the extended sliding mode control is studied and applied to the cruise and active suspension of the HST.


Electronics ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 813
Author(s):  
Gia Quoc Bao Tran ◽  
Thanh-Phong Pham ◽  
Olivier Sename ◽  
Eduarda Costa ◽  
Péter Gáspár

This paper presents an integrated linear parameter-varying (LPV) control approach of an autonomous vehicle with an objective to guarantee driving comfort, consisting of cruise and semi-active suspension control. First, the vehicle longitudinal and vertical dynamics (equipped with a semi-active suspension system) are presented and written into LPV state-space representations. The reference speed is calculated online from the estimated road type and the desired comfort level (characterized by the frequency weighted vertical acceleration defined in the ISO 2631 norm) usingprecomputed polynomial functions. Then, concerning cruise control, an LPV H2 controller using a linear matrix inequality (LMI) based polytopic approach combined with the compensation of the estimated disturbance forces is developed to track the comfort-oriented reference speed. To further enhance passengers’ comfort, a decentralized LPV H2 controller for the semi-active suspension system is proposed, minimizing the effect of the road profile variations. The interaction with cruise control is achieved by the vehicle’s actual speed being a scheduling parameter for suspension control. To assess the strategy’s performance, simulations are conducted using a realistic nonlinear vehicle model validated from experimental data. The simulation results demonstrate the proposed approach’s capability to improve driving comfort.


1996 ◽  
Vol 29 (1) ◽  
pp. 7130-7134
Author(s):  
Robert Habib Istepanian ◽  
Ian Pratt ◽  
Roger Goodall ◽  
Simon Jones

Author(s):  
Hakan Basargan ◽  
András Mihály ◽  
Péter Gáspár ◽  
Olivier Sename

This paper introduces an adaptive semi-active suspension control by considering global positioning system-based and historical road information. The main idea of this study is to find a corresponding trade-off between comfort and stability at different road irregularities. The introduced semi-active controller is designed based on the Linear Parameter-Varying framework. The behavior of the designed controller can be modified by the use of a scheduling variable. This scheduling variable is selected by considering the various road category. TruckSim simulation environment is used in order to validate the introduced adaptive semi-active suspension control system by comparing it with the non-adaptive scenario. The results show that both driving comfort and vehicle stability have been improved with the proposed adaptive semi-active suspension control.


Sign in / Sign up

Export Citation Format

Share Document