scholarly journals Energy Management Optimization of a Dual Motor Lithium Ion Capacitors-Based Hybrid Super Sport Car

2021 ◽  
Vol 11 (2) ◽  
pp. 885
Author(s):  
Alessandro Franceschi ◽  
Nicolò Cavina ◽  
Riccardo Parenti ◽  
Maurizio Reggiani ◽  
Enrico Corti

Nowadays, hybrid electric vehicles represent one of the main solutions for the reduction of greenhouse gases in the automotive sector. Alongside the reduction of CO2, hybrid electric vehicles serve as a strong alternative on drivability and performance to conventional internal combustion engine-based vehicles. Vehicles exist with various missions; super sport cars usually aim to reach peak performance and to guarantee a great driving experience to the driver, but great attention must also be paid to fuel consumption. According to the vehicle mission, hybrid electric vehicles can differ in the powertrain configuration and the choice of the energy storage system. Manufacturers have recently started to work on Lithium-Ion Capacitors (LiC) -based hybrid vehicles. This paper discusses the usage of a control-oriented vehicle and powertrain model to analyze the performance of a dual motor LiC-based hybrid V12 vehicle by Automobili Lamborghini. P3–P4 and P2–P4 parallel hybrid configurations have been selected and compared since they allow to fully exploit the potential of the LiC storage system characterized by high power. The validated model has been used to develop control strategies aimed at fuel economy and CO2 reduction, and in particular, both Rule Based Strategies (RBS) and Equivalent Consumption Minimization Strategies (ECMS) are presented in the paper. A critical comparison between the various powertrain configurations is carried out, keeping into account the peculiarities of the LiC technology and evaluating the performance of the different control approaches.

Author(s):  
Krishnashis Chatterjee ◽  
Pradip Majumdar ◽  
David Schroeder ◽  
S. Rao Kilaparti

Development of electric and hybrid electric vehicles is of great interest to the transportation industry due to increased demand and cost of imported fuel, uncertainty in the steady supply of oil, and increased standards for reduced emissions. Lithium-ion batteries are considered as one of the leading types for the battery systems to be employed in electric vehicles (EVs) or hybrid electric vehicles (HEVs). Using a regenerative braking system and storing it in battery stacks and using it later for propulsion and acceleration can improve the overall efficiency and reduction of fuel consumption. The objective of this study is to evaluate experimentally the battery performance considering different discharge and charge rates, and investigate the thermal behavior and thermal management requirements of the batteries under a variety of environmental conditions. An experimental test facility has been developed to evaluate thermal performance during charging and discharging modes. Environmental temperatures were varied in environmental chamber to analyze their effects on the charging and discharging patterns of the battery by using the CADEX battery analyzer in order to find the temperature range for optimum battery performance. The batteries were monitored with thermal sensors and a thermal imaging camera while they were run through different load scenarios. In the present study, lithium-ion batteries have been tested and battery performance in terms of polarization curves and discharge capacity were measured using a computerized battery analyzer system for different discharge and charge rates, and over a range of ambient temperatures. Results indicate that at higher discharge and charge rates battery performance decreases due to increased polarization losses, which results in increased internal heat generation and temperature of the battery. Battery performance also depends strongly on the ambient temperature conditions.


2018 ◽  
Vol 2 (8) ◽  
pp. 1726-1736 ◽  
Author(s):  
Jialong Liu ◽  
Qiangling Duan ◽  
Haodong Chen ◽  
Jinhua Sun ◽  
Qingsong Wang

Herein, an optimal multistage charge strategy for commercial lithium ion batteries is proposed to enhance the performance of electric vehicles and hybrid electric vehicles.


2020 ◽  
Vol 11 (2) ◽  
pp. 31 ◽  
Author(s):  
Heejung Jung

Hybrid electric vehicles (HEVs) and plug-in hybrid electric vehicles (PHEVs) are evolving rapidly since the introduction of Toyota Prius into the market in 1997. As the world needs more fuel-efficient vehicles to mitigate climate change, the role of HEVs and PHEVs are becoming ever more important. While fuel economies of HEVs and PHEVs are superior to those of internal combustion engine (ICE) powered vehicles, they are partially powered by batteries and therefore they resemble characteristics of battery electric vehicles (BEVs) such as dependence of fuel economy on ambient temperatures. It is also important to understand how different extent of hybridization (a.k.a., hybridization ratio) affects fuel economy under various driving conditions. In addition, it is of interest to understand how HEVs and PHEVs compare with BEVs at a similar vehicle weight. This study investigated the relationship between vehicle mass and vehicle performance parameters, mainly fuel economy and driving range of PHEVs focused on 2018 and 2019 model years using the test data available from fuel economy website of the US Environmental Protection Agency (EPA). Previous studies relied on modeling to understand mass impact on fuel economy for HEV as there were not enough number of HEVs in the market to draw a trendline at the time. The study also investigated the effect of ambient temperature for HEVs and PHEVs and kinetic energy recovery of the regenerative braking using the vehicle testing data for model year 2013 and 2015 from Idaho National Lab (INL). The current study assesses current state-of-art for PHEVs. It also provides analysis of experimental results for validation of vehicle dynamic and other models for PHEVs and HEVs.


Sign in / Sign up

Export Citation Format

Share Document