scholarly journals Fuel Economy of Plug-In Hybrid Electric and Hybrid Electric Vehicles: Effects of Vehicle Weight, Hybridization Ratio and Ambient Temperature

2020 ◽  
Vol 11 (2) ◽  
pp. 31 ◽  
Author(s):  
Heejung Jung

Hybrid electric vehicles (HEVs) and plug-in hybrid electric vehicles (PHEVs) are evolving rapidly since the introduction of Toyota Prius into the market in 1997. As the world needs more fuel-efficient vehicles to mitigate climate change, the role of HEVs and PHEVs are becoming ever more important. While fuel economies of HEVs and PHEVs are superior to those of internal combustion engine (ICE) powered vehicles, they are partially powered by batteries and therefore they resemble characteristics of battery electric vehicles (BEVs) such as dependence of fuel economy on ambient temperatures. It is also important to understand how different extent of hybridization (a.k.a., hybridization ratio) affects fuel economy under various driving conditions. In addition, it is of interest to understand how HEVs and PHEVs compare with BEVs at a similar vehicle weight. This study investigated the relationship between vehicle mass and vehicle performance parameters, mainly fuel economy and driving range of PHEVs focused on 2018 and 2019 model years using the test data available from fuel economy website of the US Environmental Protection Agency (EPA). Previous studies relied on modeling to understand mass impact on fuel economy for HEV as there were not enough number of HEVs in the market to draw a trendline at the time. The study also investigated the effect of ambient temperature for HEVs and PHEVs and kinetic energy recovery of the regenerative braking using the vehicle testing data for model year 2013 and 2015 from Idaho National Lab (INL). The current study assesses current state-of-art for PHEVs. It also provides analysis of experimental results for validation of vehicle dynamic and other models for PHEVs and HEVs.

2021 ◽  
Vol 12 (4) ◽  
pp. 161
Author(s):  
Karim Hamza ◽  
Kang-Ching Chu ◽  
Matthew Favetti ◽  
Peter Keene Benoliel ◽  
Vaishnavi Karanam ◽  
...  

Software tools for fuel economy simulations play an important role during design stages of advanced powertrains. However, calibration of vehicle models versus real-world driving data faces challenges owing to inherent variations in vehicle energy efficiency across different driving conditions and different vehicle owners. This work utilizes datasets of vehicles equipped with OBD/GPS loggers to validate and calibrate FASTSim (software originally developed by NREL) vehicle models. The results show that window-sticker ratings (derived from dynamometer tests) can be reasonably accurate when averaged across many trips by different vehicle owners, but successfully calibrated FASTSim models can have better fidelity. The results in this paper are shown for nine vehicle models, including the following: three battery-electric vehicles (BEVs), four plug-in hybrid electric vehicles (PHEVs), one hybrid electric vehicle (HEV), and one conventional internal combustion engine (CICE) vehicle. The calibrated vehicle models are able to successfully predict the average trip energy intensity within ±3% for an aggregate of trips across multiple vehicle owners, as opposed to within ±10% via window-sticker ratings or baseline FASTSim.


2021 ◽  
Vol 292 ◽  
pp. 126040
Author(s):  
Xiaohua Zeng ◽  
Qifeng Qian ◽  
Hongxu Chen ◽  
Dafeng Song ◽  
Guanghan Li

Author(s):  
Krishnashis Chatterjee ◽  
Pradip Majumdar ◽  
David Schroeder ◽  
S. Rao Kilaparti

Development of electric and hybrid electric vehicles is of great interest to the transportation industry due to increased demand and cost of imported fuel, uncertainty in the steady supply of oil, and increased standards for reduced emissions. Lithium-ion batteries are considered as one of the leading types for the battery systems to be employed in electric vehicles (EVs) or hybrid electric vehicles (HEVs). Using a regenerative braking system and storing it in battery stacks and using it later for propulsion and acceleration can improve the overall efficiency and reduction of fuel consumption. The objective of this study is to evaluate experimentally the battery performance considering different discharge and charge rates, and investigate the thermal behavior and thermal management requirements of the batteries under a variety of environmental conditions. An experimental test facility has been developed to evaluate thermal performance during charging and discharging modes. Environmental temperatures were varied in environmental chamber to analyze their effects on the charging and discharging patterns of the battery by using the CADEX battery analyzer in order to find the temperature range for optimum battery performance. The batteries were monitored with thermal sensors and a thermal imaging camera while they were run through different load scenarios. In the present study, lithium-ion batteries have been tested and battery performance in terms of polarization curves and discharge capacity were measured using a computerized battery analyzer system for different discharge and charge rates, and over a range of ambient temperatures. Results indicate that at higher discharge and charge rates battery performance decreases due to increased polarization losses, which results in increased internal heat generation and temperature of the battery. Battery performance also depends strongly on the ambient temperature conditions.


Author(s):  
Peter S. Curtiss ◽  
Jan F. Kreider

An LCA tool first reported on at the ASME ES conference in 2007 has been expanded and improved as follows: • More than 400 production vehicles from all over the world are now in the data base. • Conventional and renewable liquid and gas fuels are included. • Electric vehicles (EVs) and plug in hybrid electric vehicles (PHEVs) are included along with hybrid electric vehicles (HEVs) and conventional internal combustion engine vehicles. • The tool is now web-based. The LCA tool includes both fuel and vehicle life cycle coefficients in its data base. To illustrate the LCA ranking of vehicles using electricity (EVs, PHEVs, and HEVs) vs. conventional vehicles this paper will report on greenhouse gas emissions, total life cycle energy use along with NOx, SOx and mercury emissions. It will be shown, for example, that EVs are not the cleanest solution contrary to claims of various commentators in the popular press and of EV enthusiasts who do not take the entire life cycle into account.


2019 ◽  
Vol 141 (03) ◽  
pp. S08-S15
Author(s):  
Guoming G. Zhu ◽  
Chengsheng Miao

Making future vehicles intelligent with improved fuel economy and satisfactory emissions are the main drivers for current vehicle research and development. The connected and autonomous vehicles still need years or decades to be widely used in practice. However, some advanced technologies have been developed and deployed for the conventional vehicles to improve the vehicle performance and safety, such as adaptive cruise control (ACC), automatic parking, automatic lane keeping, active safety, super cruise, and so on. On the other hand, the vehicle propulsion system technologies, such as clean and high efficiency combustion, hybrid electric vehicle (HEV), and electric vehicle, are continuously advancing to improve fuel economy with satisfactory emissions for traditional internal combustion engine powered and hybrid electric vehicles or to increase cruise range for electric vehicles.


Sign in / Sign up

Export Citation Format

Share Document