scholarly journals Full Three-Dimensional Inverse Design Method for S-Ducts Using a New Dimensionless Flow Parameter

2021 ◽  
Vol 11 (3) ◽  
pp. 1119
Author(s):  
Atefeh Kariminia ◽  
Mahdi Nili-Ahmadabadi ◽  
Kyung Chun Kim

In this study, a new inverse design method is proposed for the full 3-D inverse design of S-ducts using curvature-based dimensionless pressure distribution as a target function. The wall pressure distribution in a 3-D curved duct is a function of the centerline curvature and the cross-sectional profile and area. A dimensionless pressure parameter was obtained as a function of the duct curvature and height of the cross-sections based on the normal pressure gradient equation. The dimensionless pressure parameter was used to eliminate the effect of the cross-sectional area on the wall pressure distribution. Full 3-D inverse design of an S-shaped duct was carried out by substituting the 3-D duct with a large number of 2-D planar ducts. The ball-spine inverse design method with vertical spins was coupled with the dimensionless pressure parameter as a target function for the design of the planar ducts. The inverse design process was performed in two steps. First, the height of each cross-section was considered constant, and only the duct centerline was allowed to be deformed by applying the difference between the dimensionless pressure on the upper and lower lines of symmetry plane. Then, a constant curvature was considered for each centerline in the equation, and the difference between the current and the target dimensionless pressure was applied to each upper and lower line of the planar sections to correct the heights of the 2-D planar sections, separately. The method was validated by choosing a straight duct as an initial guess, which converges to the target S-shaped duct. The results showed that the method is an efficient physical-based residual-correction method with low computational cost and good convergence rate. The 3-D wall pressure distribution of a high-deflected 3-D S-shaped diffuser was modified to eliminate the separation, secondary flow, and outlet distortion. Finally, the geometry corresponding to the modified pressure was obtained by the proposed 3-D inverse design method, which revealed higher pressure recovery, lower total pressure loss, and lower outlet flow distortion and swirl angle.

Author(s):  
M. H. Noorsalehi ◽  
M. Nili-Ahamadabadi ◽  
E. Shirani ◽  
M. Safari

In this study, a new inverse design method called Elastic Surface Algorithm (ESA) is developed and enhanced for axial-flow compressor blade design in subsonic and transonic flow regimes with separation. ESA is a physically based iterative inverse design method that uses a 2D flow analysis code to estimate the pressure distribution on the solid structure, i.e. airfoil, and a 2D solid beam finite element code to calculate the deflections due to the difference between the calculated and target pressure distributions. In order to enhance the ESA, the wall shear stress distribution, besides pressure distribution, is applied to deflect the shape of the airfoil. The enhanced method is validated through the inverse design of the rotor blade of the first stage of an axial-flow compressor in transonic viscous flow regime. In addition, some design examples are presented to prove the effectiveness and robustness of the method. The results of this study show that the enhanced Elastic Surface Algorithm is an effective inverse design method in flow regimes with separation and normal shock.


Author(s):  
L. de Vito ◽  
R. A. Van den Braembussche ◽  
H. Deconinck

This paper presents a novel iterative viscous inverse method for turbomachinery blading design. It is made up of two steps: The first one consists of an analysis by means of a Navier-Stokes solver, the second one is an inverse design by means of an Euler solver. The inverse design resorts to the concept of permeable wall, and recycles the ingredients of Demeulenaere’s inviscid inverse design method that was proven fast and robust. The re-design of the LS89 turbine nozzle blade, starting from different arbitrary profiles at subsonic and transonic flow regimes, demonstrates the merits of this approach. The method may result in more than one blade profile that meets the objective, i.e. that produces the viscous target pressure distribution. To select one particular solution among all candidates, a target mass flow is enforced by adjusting the outlet static pressure. The resulting profiles are smooth (oscillation-free). The design of turbine blades with arbitrary pressure distribution at transonic and supersonic outflow illustrates the correct behavior of the method for a large range of applications. The approach is flexible because only the pitch chord ratio is fixed and no limitations are imposed on the stagger angle.


Author(s):  
A. Madadi ◽  
M. J. Kermani ◽  
M. Nili-Ahmadabadi

Recently, an inverse design algorithm called ball–spine algorithm (BSA) was introduced for the design of 2D ducts. In this approach, the walls are considered as a set of virtual balls that can move freely along the straight directions called spines. In the present work, the method is developed for quasi-three-dimensional (quasi-3D) design of S-shaped ducts with a predefined width. To do so, the upper and lower lines of the S-duct symmetric section are modified under the BSA and then, the 3D S-duct geometry is obtained based on elliptic cross-sectional profiles. The target pressure distributions (TPDs) along the upper and lower lines are prescribed so that separation does not occur. Finally, the flow through the designed S-duct is numerically analyzed using a viscous flow solver with the SST turbulence model to validate the designed S-duct performance. The performance of the designed S-duct is compared to original and optimized versions of a benchmark S-duct diffuser. Results show that the present S-duct has a better performance.


Author(s):  
Ali Madadi ◽  
Mahdi Nili-Ahmadabadi ◽  
Mohammad Jafar Kermani

Recently, an inverse design algorithm called ball-spine algorithm (BSA) is introduced for the design of 2-D ducts. In this approach, the walls are considered as a set of virtual balls that can freely move along the straight directions called spines. In the present work the method is developed for quasi 3-D design of S-shaped ducts with a predefined width. To do so, the upper and lower lines of the S-duct symmetric section are modified under the BSA and then, the 3-D S-duct geometry is obtained based on elliptic cross sectional profiles. The target pressure distributions along the upper and lower lines are prescribed so that the separation does not occur. Finally, the flow through the designed S-duct is numerically analyzed using a viscous flow solver with the SST turbulence model to validate the designed S-duct performance.


Author(s):  
M. Nili-Ahmadabadi ◽  
M. Safari ◽  
A. Ghaei ◽  
E. Shirani

In this research, a novel inverse design algorithm called, Elastic Surface Algorithm (ESA), is developed for viscose and inviscid external flow regimes. ESA is a physically based iterative inverse design method that uses flow analysis code to estimate the pressure distribution on the solid structure, i.e. airfoil, and a 2D solid beam finite element code to calculate the deflections due to the difference between the calculated and target pressure distribution. The proposed method is validated through the inverse design of three different airfoils. In addition, two design examples are presented to prove the robustness of the method in various flow regimes. Also, the convergence rate of this method is compared with flexible membrane method (MGM) and Ball-Spine Algorithm (BSA) methods in inviscid flow regime. The results of this study showed that not only the ESA method is an effective method for inverse design of airfoils, but also it can considerably increase the convergence rate in transonic flow regimes.


Author(s):  
Zhaowei Liu ◽  
Hu Wu

A recently developed aerodynamic inverse design method for axial compressor is presented in this paper. The inverse design method is based on solving the three-dimensional Reynolds-averaged Navier-Stokes equations. Blade surface static pressure distribution is prescribed before the design procedure. A new inverse design boundary condition is established based on the conservation of Riemann invariant on the blade surface. Blade profile is constantly modified by a virtual wall velocity which is obtained from the difference between the current and prescribed static pressure. The dynamic mesh theory is used to update the computation mesh where the shape of the blade is changing during the design process. The design procedure finishes after the prescribed static pressure distribution on the blade surface is satisfied. The method is first validated by a blade recovery test. It is then used to redesign the NASA Rotor 67.


2018 ◽  
Vol 163 ◽  
pp. 737-747
Author(s):  
Haiwen Tu ◽  
Yunfei Yang ◽  
Xujian Lyu ◽  
De Xie ◽  
Xianjiao Gao ◽  
...  

2003 ◽  
Vol 125 (2) ◽  
pp. 310-316 ◽  
Author(s):  
L. de Vito ◽  
R. A. Van den Braembussche ◽  
H. Deconinck

This paper presents a novel iterative viscous inverse design method for turbomachinery blading. It is made up of two steps: the first one consists of an analysis by means of a Navier-Stokes solver; the second one is an inverse design by means of an Euler solver. The inverse design resorts to the concept of permeable wall, and recycles the ingredients of Demeulenaere’s inviscid inverse design method that was proven fast and robust. The re-design of the LS89 turbine nozzle blade, starting from different arbitrary profiles at subsonic and transonic flow regimes, demonstrates the merits of this approach. The method may result in more than one blade profile that meets the objective, i.e., that produces the viscous target pressure distribution. To select one particular solution among all candidates, a target mass flow is enforced by adjusting the outlet static pressure. The resulting profiles are smooth (oscillation-free). The design of turbine blades with arbitrary pressure distribution at transonic and supersonic outflow illustrates the correct behavior of the method for a large range of applications. The approach is flexible because only the pitch chord ratio is fixed and no limitations are imposed on the stagger angle.


Sign in / Sign up

Export Citation Format

Share Document