pressure parameter
Recently Published Documents


TOTAL DOCUMENTS

55
(FIVE YEARS 16)

H-INDEX

9
(FIVE YEARS 1)

MAUSAM ◽  
2021 ◽  
Vol 51 (1) ◽  
pp. 81-84
Author(s):  
KAMALJIT RAY ◽  
B. C. PANDA

In the present study attempt has been made to obtain the dimensionality of atmosphere by using Grassberger and Proccacia's model of correlation dimension on pressure parameter for Ahmedabad station. Based on single variable time series, the dimension of pressure at tractor is evaluated to obtain a lower bound on the number of essential variables necessary to model atmospheric dynamics. A low dimensionality of the order of five to seven for the pressure variable was obtained if interannual and seasonal variabilities are excluded by using seasonal data.


2021 ◽  
pp. 107754632110388
Author(s):  
Yuanran Qiu ◽  
Wei Xu ◽  
Wenjun Bu ◽  
Wenzheng Qin

The structure of floating rafts-equipped vessels will be inevitably undermined due to application of large-scale designs. When encountering strong external disturbances, not only the rafts will deviate from the original balanced position but also greater elastic deformation will be generated, which may lead to the relative displacement between devices on rafts and endanger the operation safety of equipment. In this study, a class of raft elastic deformation monitoring and discrimination methods is put forward via analyzing the features of large-scale raft elastic deformation. Air springs layout is optimized through finite element method (FEM). A flexible raft control responding model is established and a novel raft elastic deformation suppression technique is proposed based on air spring pressure parameter identification that adjusts the air spring pressure distribution. The experimental results indicate that this technique can effectively control the attitude of the rafts and reduce elastic deformation, leading to a largely improved control precision and a faster convergence speed of the raft.


2021 ◽  
Vol 11 (2) ◽  
pp. 274
Author(s):  
Mohamed Moncef Ben Khelifa ◽  
Hachem A. Lamti ◽  
Vincent Hugel

The work presented in this manuscript has the purpose to assess the relationship between human factors and physiological indices. We discuss the relationship between stress as human factor and cerebral and muscular signals as features. Ten male paraplegic, right-handed subjects were volunteers for the experiment (mean age 34 ±6). They drove a virtual wheelchair in an indoor environment. They filled five missions where, in each one, an environmental parameter was changed. Meanwhile, they were equipped with Electromyography (EMG) sensors and Electroencephalography (EEG). Frequency and temporal features were filtered and extracted. Principal component analysis (PCA), Fisher’s tests, repeated measure Anova and post hoc Tukey test (α = 0.05) were implemented for statistics. Environmental modifications are subject to induce stress, which impacts muscular and cerebral activities. While the time pressure parameter was the most influent, the transition from static to moving obstacles (avatars), tends to have a significant impact on stress levels. However, adding more moving obstacles did not show any impact. A synchronization factor was noticed between cerebral and muscular features in higher stress levels. Further examination is needed to assess EEG reliability in these situations.


2021 ◽  
Vol 11 (3) ◽  
pp. 1119
Author(s):  
Atefeh Kariminia ◽  
Mahdi Nili-Ahmadabadi ◽  
Kyung Chun Kim

In this study, a new inverse design method is proposed for the full 3-D inverse design of S-ducts using curvature-based dimensionless pressure distribution as a target function. The wall pressure distribution in a 3-D curved duct is a function of the centerline curvature and the cross-sectional profile and area. A dimensionless pressure parameter was obtained as a function of the duct curvature and height of the cross-sections based on the normal pressure gradient equation. The dimensionless pressure parameter was used to eliminate the effect of the cross-sectional area on the wall pressure distribution. Full 3-D inverse design of an S-shaped duct was carried out by substituting the 3-D duct with a large number of 2-D planar ducts. The ball-spine inverse design method with vertical spins was coupled with the dimensionless pressure parameter as a target function for the design of the planar ducts. The inverse design process was performed in two steps. First, the height of each cross-section was considered constant, and only the duct centerline was allowed to be deformed by applying the difference between the dimensionless pressure on the upper and lower lines of symmetry plane. Then, a constant curvature was considered for each centerline in the equation, and the difference between the current and the target dimensionless pressure was applied to each upper and lower line of the planar sections to correct the heights of the 2-D planar sections, separately. The method was validated by choosing a straight duct as an initial guess, which converges to the target S-shaped duct. The results showed that the method is an efficient physical-based residual-correction method with low computational cost and good convergence rate. The 3-D wall pressure distribution of a high-deflected 3-D S-shaped diffuser was modified to eliminate the separation, secondary flow, and outlet distortion. Finally, the geometry corresponding to the modified pressure was obtained by the proposed 3-D inverse design method, which revealed higher pressure recovery, lower total pressure loss, and lower outlet flow distortion and swirl angle.


2021 ◽  
Vol 264 ◽  
pp. 02015
Author(s):  
Chorikul Raupov ◽  
Ulugbek Shermuxamedov ◽  
Anora Karimova

The paper presents the results of experimental studies on the strength and deformations of lightweight concrete, mortar matrix and hardened cement paste under triaxial compression. Tests on samples were carried out using short-term triaxial proportional σ1 > σ2 = σ3 loading (i.e. axial compression + lateral hydrostatic pressure). During the loading, the ratio of the main stresses (both axial and lateral) was kept constant up to the end of tests. The experimental studies were carried out for different low ratios of σ2/σ1. A theoretical estimation has been discussed to approximate experimental results and prediction of triaxial strength values for different types of lightweight concrete. An estimation of the confining pressure parameter K has been done for the used mode of loading.


2020 ◽  
Vol 31 (11) ◽  
pp. 2287-2295 ◽  
Author(s):  
Marcel Niehaus ◽  
Kenneth N. Robinson ◽  
Teresa Murta ◽  
Efstathios A. Elia ◽  
Alan M. Race ◽  
...  

2020 ◽  
Vol 8 (2) ◽  
pp. 95-102
Author(s):  
J.P. Tripathi ◽  
◽  
U.P. Singh ◽  
B.K. Singh ◽  
◽  
...  

The piezo-viscous effect is crucial in fluid flows under high-pressure applications such as fluid film lubrication, microfluidics, and geophysics. We have investigated the combined influences of piezo-viscous dependence and non-Newtonian couple stresses on the performance of circular plate squeeze film bearings using Stokes Micro-Continuum theory of couple stress fluids together with the exponential variation of viscosity with pressure. A closed-form solution for film pressure has been obtained using the homotopy analysis method. The numerical results for pressure and load capacity with different values of the viscosity-pressure parameter have been calculated and compared with iso-viscous couple stress and Newtonian lubricants. An enhanced pressure and load capacity are observed in the analysis. The response time for the bearing (plate approach time) has also been calculated and a significant increase is observed.


Author(s):  
Manoj Chavan ◽  
Ravish R. Singh ◽  
Vinayak Bharadi

Online signature verification is a prominent behavioral biometric trait. It offers many dynamic features along with static two dimensional signature image. In this paper, the Hybrid Wavelet Transform (HWT) was generated using Kronecker product of two orthogonal transform such as DCT, DHT, Haar, Hadamard and Kekre. HWT has the ability to analyze the signal at global as well as local level like wavelet transform. HWT-1 and -2 was applied on the first 128 samples of the pressure parameter and first 16 samples of the output were used as feature vector for signature verification. This feature vector is given to Left to Right HMM classifier to identify the genuine and forged signature. For HWT-1, DCT HAAR offers best FAR and FRR. . For HWT-2, KEKRE 128 offers best FAR and FRR. HWT-1 offers better performance than HWT- 2 in terms of FAR and FRR. As the number of states increase, the performance of the system improves. For HWT - 1, KEKRE 128 offers best performance at 275 symbols whereas for HWT - 2, best performance is at 475 symbols by KEKRE 128.


Sign in / Sign up

Export Citation Format

Share Document