scholarly journals Smart Coordinate Measuring Machine (CMM) Inspection for Turbine Guide Vanes with Trend Line and Geometric Profile Tolerance

2021 ◽  
Vol 11 (4) ◽  
pp. 1658
Author(s):  
Marcin Jamontt ◽  
Paweł Pyrzanowski

Turbine guide vanes are among the most critical and complex turbine parts. As an entire engine comprises a significant number of vanes, simplification of the measurement process translates into overall time and money savings. The key to simplification is to define critical areas for inspection, which enables relaxation of strict inspection standards in all areas of stable process manufacturing. The method described herein can help engineers to achieve savings in inspection time and cost, at the same time ensuring the correct shape of vanes as the approach used in this work places great emphasis on correlations between measurements, working conditions, and manufacturing abilities. Another element of the novelty of this approach is an atypical hybrid convention for the crossing of vertical and horizontal inspection paths, assuring a correlation between the measured sections. Although this novel approach was used to measure the geometry of a cast turbine guide vane, it can be easily implemented to measure the geometry of any other element of complex shape.

Author(s):  
W. Tabakoff ◽  
W. Hosny ◽  
A. Hamed

A two-dimensional finite-difference numerical technique is presented to determine the temperature distribution of an internally-cooled blade of radial turbine guide vanes. A simple convection cooling is assumed inside the guide vane. Such an arrangement results in relatively small cooling effectiveness at the leading edge and at the trailing edge. Heat transfer augmentation in these critical areas may be achieved by using impingement jets and film cooling. A computer program is written in Fortran IV for IBM 370/165 computer.


Author(s):  
Nicolas Audfray ◽  
Charyar Mehdi-Souzani ◽  
Claire Lartigue

To perform 3D inspection, the most common digitizing system is a coordinate measuring machine (CMM) equipped with a touch trigger probe. Because of their large time consuming, a large number of industrial digitizing systems presenting different characteristics have recently emerged, but collected data quality strongly depends on the sensor technology combined with the associated displacement system. The works presented here focus on a novel approach that help users to select the most appropriate digitizing system in regard of the specification to be verified. This selection is performed in two steps: an ability selection that removes non convenient systems and a performance selection to select the system that provides sufficient data quality in the minimum time. This quality can be noise, trueness, density, depending on the specification to be verified. To store all necessary information, databases that contain intrinsic and qualified information have been developed. An example with GPS specifications is treated.


Author(s):  
Rajesh Subramanian ◽  
H. James de St. Germain ◽  
Samuel Drake

Inspection is an important stage in the manufacturing process of machined parts. Coordinate measuring machines (CMM) have become more automatic, programmable, and capable of fulfilling the growing demands of inspection. However, fixturing (datum alignment) of parts is still done manually, consuming valuable inspection time. In this paper, we describe an automated datum alignment technique which integrates a vision system with the CMM to avoid part fixturing. The rough position of the part is estimated through image analysis. This initial reference frame drives the CMM through an automatic datum alignment procedure, thereby automatically establishing the reference frame without the use of fixtures. This technique has been demonstrated for two and a half dimensional (2.5D) machined parts with well-defined features that exhibit a stable position on a flat table.


Author(s):  
Yongjin Kwon

In-process part inspection using a spindle touch probe has gained a significant importance, mainly because parts can remain on the machine without disrupting the machine setup while inspection is being conducted. This practice leads to a shorter inspection time, improved part accuracies, and reduction of scraps. Recently, intense domestic and international competition has put more importance on part quality in terms of producing parts right the first time and maintaining the consistent quality standards. A literature review revealed that a comparative analysis between in-process gauging using a touch probe and post-process inspection using a coordinate measuring machine (CMM) to ascertain part quality has not been adequately studied. Therefore, there is a need for a study to measure the characteristics of the two inspection techniques. To address the problem, cutting experiments were conducted and measurement data were analyzed using a state-of-the-art CNC machine, a CMM, a touch probe, and a high-precision ballbar system. The experimental data show that machined features and touch probe measurements are affected by the inherent shortcomings in machine tool structure, suggesting a machine tool capability analysis be undertaken in tune with the required tolerance specifications prior to machining operations, rather than solely relying on the touch probe inspection for part quality assessment.


2015 ◽  
Vol 9 (5) ◽  
pp. 530-533 ◽  
Author(s):  
Adam Woźniak ◽  
◽  
Grzegorz Krajewski

Scanning probe CMMs have come to be considered the standard in coordinate metrology, not only because they provide high-quantity, high-speed data gathering but also because the scanning technology significantly decreases inspection time. Modern manufacturing, especially in today’s highly competitive economy, requires increasingly efficient measuring machines and processes because inspection machines have often become the bottlenecks in the entire manufacturing processes. More efficient coordinate metrology can mean faster measurement cycles with acceptable accuracies. However, increasing scanning speeds has also significantly increased errors. This article proposes a new method of investigating and identifying the principal components of CMM dynamic errors. The principle of the method is presented, and the validity of the method is experimentally confirmed on a bridge coordinate measuring machine.


2018 ◽  
Vol 12 (4) ◽  
pp. 264-271 ◽  
Author(s):  
Alireza Izadi ◽  
Fariborz Vafaee ◽  
Arash Shishehian ◽  
Ghodratollah Roshanaei ◽  
Behzad Fathi Afkari

Background. Recently, non-presintered chromium-cobalt (Cr-Co) blocks with the commercial name of Ceramill Sintron were introduced to the market. However, comprehensive studies on the dimensional accuracy and fit of multi-unit frameworks made of these blocks using the coordinate measuring machine (CMM) are lacking. This study aimed to assess and compare the dimensional changes and fit of conventional casting and milled frameworks using Ceramill Sintron. Methods. A metal model was designed and scanned and 5-unit frameworks were fabricated using two techniques: (I) the conventional casting method (n=20): the wax model was designed, milled in the CAD/CAM machine, flasked and invested; (II) the milling method using Ceramill Sintron blocks (n=20): the wax patterns of group 1 were used; Ceramill Sintron blocks were milled and sintered. Measurements were made on the original reference model and the fabricated frameworks using the CMM in all the three spatial dimensions, and dimensional changes were recorded in a checklist. Data were analyzed with descriptive statistics, and the two groups were compared using one-way ANOVA and Tukey test (α=0.05). Results. The fabricated frameworks in both groups showed significant dimensional changes in all the three dimensions. Comparison of dimensional changes between the two groups revealed no significant differences (P>0.05) except for transverse changes (arch) that were significantly greater in Ceramill Sintron frameworks (P<0.05). Conclusion. The two manufacturing processes were the same regarding dimensional changes and the magnitude of marginal gaps and both processes resulted in significant dimensional changes in frameworks. Ceramill Sintron frameworks showed significantly greater transverse changes than the conventional frameworks.


Sign in / Sign up

Export Citation Format

Share Document