scholarly journals A Model-Based SHM Strategy for Gears—Development of a Hybrid FEM-Analytical Approach to Investigate the Effects of Surface Fatigue on the Vibrational Spectra of a Back-to-Back Test Rig

2021 ◽  
Vol 11 (5) ◽  
pp. 2026 ◽  
Author(s):  
Franco Concli ◽  
Ludovico Pierri ◽  
Claudio Sbarufatti

Transmissions are extensively employed in mechanical gearboxes when power conversion is required. Being able to provide specific maintenance is a crucial factor for both economics and reliability. However, although periodic transmission maintenance increases the systems’ longevity, it cannot prevent or predict sporadic major failures. In this context, structural health monitoring (SHM) represents a possible solution. Identifying variations of a specific measurable signal and correlating them with the type of damage or its location and severity may help assess the component condition and establish the need for maintenance operation. However, the collection of sufficient experimental examples for damage identification may be not convenient for big gearboxes, for which destructive experiments are too expensive, thus paving the way to model-based approaches, based on a numerical estimation of damage-related features. In this work, an SHM approach was developed based on signals from numerical simulations. To validate the approach with experimental measurements, a back-to-back test rig was used as a reference. Several types and severities of damages were simulated with an innovative hybrid analytical–numerical approach that allowed a significant reduction of the computational effort. The vibrational spectra that characterized the different damage conditions were processed through artificial neural networks (ANN) trained with numerical data and used to predict the presence, location, and severity of the damage.


2016 ◽  
Vol 16 (1) ◽  
pp. 3-23 ◽  
Author(s):  
Yongfeng Xu ◽  
Weidong Zhu

Mode shapes (MSs) have been extensively used to detect structural damage. This paper presents a new non-model-based damage identification method that uses measured MSs to identify damage in plates. A MS damage index (MSDI) is proposed to identify damage near regions with consistently high values of MSDIs associated with MSs of different modes. A MS of a pseudo-undamaged plate can be constructed for damage identification using a polynomial of a properly determined order that fits the corresponding MS of a damaged plate, if the associated undamaged plate is geometrically smooth and made of materials that have no stiffness and mass discontinuities. It is shown that comparing a MS of a damaged plate with that of a pseudo-undamaged plate is better for damage identification than with that of an undamaged plate. Effectiveness and robustness of the proposed method for identifying damage of different positions and areas are numerically investigated using different MSs; effects of crucial factors that determine effectiveness of the proposed method are also numerically investigated. Damage in the form of a machined thickness reduction area was introduced to an aluminum plate; it was successfully identified by the proposed method using measured MSs of the damaged plate.



Author(s):  
M. Rajendra ◽  
K. Shankar

A novel two stage Improved Radial Basis Function (IRBF) neural network for the damage identification of a multimember structure in the frequency domain is presented. The improvement of the proposed IRBF network is carried out in two stages. Conventional RBF network is used in the first stage for preliminary damage prediction and in the second stage reduced search space moving technique is used to minimize the prediction error. The network is trained with fractional frequency change ratios (FFCs) and damage signature indices (DSIs) as effective input patterns and the corresponding damage severity values as output patterns. The patterns are searched at different damage levels by Latin hypercube sampling (LHS) technique. The performance of the novel IRBF method is compared with the conventional RBF and Genetic algorithm (GA) methods and it is found to be a good multiple member damage identification strategy in terms of accuracy and precision with less computational effort.





2020 ◽  
Vol 118 ◽  
pp. 104845
Author(s):  
Vinicius N. Alves ◽  
Matheus M. de Oliveira ◽  
Diogo Ribeiro ◽  
Rui Calçada ◽  
Alexandre Cury




2010 ◽  
Vol 44-47 ◽  
pp. 1273-1278 ◽  
Author(s):  
Liu Lei

As a type of numerical approach to dynamics of gears, multibody dynamics method can handle realistic cases of contact modeling with acceptable accuracy and considerably less computational effort. The ability to simulate contact between teeth has become an essential topic in multibody dynamics. Fully rigid method is not suited for a high quality of the analysis to take into account some elasticity in the model of meshing gear wheels. In our new approach the circumferentially rotatable rigid teeth and elastic elements composed of rotational spring-damper combinations are hereby put forward. The teeth and the body of each gear wheel are still regarded as rigid bodies, but they are connected with each other by elastic elements. Besides, Lankarani & Nikravesh Contact Model is utilized, which counts energy dissipation by means of viscous damping. Both large motions with revolutions and important elasticity are considered in this teeth-wheel multibody system model. Two examples are provided in which the simulation results of completely rigid method, the approach in [10], our new approach and finite element methods are compared. Comparisons indicate that our newly developed approach is more suitable for modeling multibody geared systems.



Author(s):  
Sartaj S. Ghai ◽  
Myung S. Jhon ◽  
Cristina H. Amon ◽  
Yiao-Tee Hsia

Lattice Boltzmann method (LBM), is used to examine multi-length scale, confined heat conduction phenomena in solids for which sub-continuum regime is important. This paper describes the implementation of the method and its application to cases pertinent to data storage and electronic devices. Thin solid films with internal heat generation and with temperature difference across the boundaries are used as case studies to illustrate the benefits of the LBM. We compare our results with various hierarchical equations of heat transfer such as Fourier, Cattaneo, and Boltzmann transport equations, as well as with experimental and numerical data from the literature. Our results exhibit a good agreement with other methodologies in one and two dimensions, at a much lower computational effort.



Sign in / Sign up

Export Citation Format

Share Document