Model based test equipment design and controller tuning for elevator endurance test rig

Author(s):  
Mukesh Prasad ◽  
K.V. Gangadharan
Author(s):  
Qi Cheng ◽  
Shuchun Wang ◽  
Xifeng Fang

The existing process equipment design resource utilization rate in automobile industry is low, so it is urgent to change the design method to improve the design efficiency. This paper proposed a fast design method of process equipment driven by classification retrieval of 3D model-based definition (MBD). Firstly, an information integration 3D model is established to fully express the product information definition and to effectively express the design characteristics of the existing 3D model. Through the classification machine-learning algorithm of 3D MBD model based on Extreme Learning Machine (ELM), the 3D MBD model with similar characteristics to the auto part model to be designed was retrieved from the complex process equipment case database. Secondly, the classification and retrieval of the model are realized, and the process equipment of retrieval association mapping with 3D MBD model is called out. The existing process equipment model is adjusted and modified to complete the rapid design of the process equipment of the product to be designed. Finally, a corresponding process equipment design system was developed and verified through a case study. The application of machine learning to the design of industrial equipment greatly shortens the development cycle of equipment. In the design system, the system learns from engineers, making them understand the design better than engineers. Therefore, it can help any user to quickly design 3D models of complex products.


2013 ◽  
Vol 456 ◽  
pp. 18-21
Author(s):  
Qing Dong Cui ◽  
Lin Yao ◽  
Yun Xiao Zhu

Along with the development of the electric car industry, the electric car battery box quality testing problem has taken the industry's attention, this article through analysis the structure of existing electric battery box in the market, elaborated a new, universal battery box testing equipment design; The device implements the electric car battery box automated testing and evaluation, not only reduced the labors intensity, improve the reliability of the product testing, credibility and the pre - qualified rate of battery box, but also the working efficiency has been greatly improved, and fill the gap of the industry.


Author(s):  
Sigrid S. Johansen ◽  
Amir R. Nejad

Abstract A digital twin is a virtual representation of a system containing all information available on site. This paper presents condition monitoring of drivetrains in marine power transmission systems through digital twin approach. A literature review regarding current operations concerning maintenance approaches in todays practices are covered. State-of-the-art fault detection in drivetrains is discussed, founded in condition monitoring, data-based schemes and model-based approaches, and the digital twin approach is introduced. It is debated that a model-based approach utilizing a digital twin could be recommended for fault detection of drivetrains. By employing a digital twin, fault detection would be extended to relatively highly diagnostic and predictive maintenance programme, and operation and maintenance costs could be reduced. A holistic model system approach is considered, and methodologies of digital twin design are covered. A physical-based model rather than a data based model is considered, however there are no clear answer whereas which type is beneficial. That case is mostly answered by the amount of data available. Designing the model introduces several pitfalls depending on the relevant system, and the advantages, disadvantages and appropriate applications are discussed. For a drivetrain it is found that multi-body simulation is advised for the creation of a digital twin model. A digital twin of a simple drivetrain test rig is made, and different modelling approaches were implemented to investigate levels of accuracy. Reference values were derived empirically by attaching sensors to the drivetrain during operation in the test rig. Modelling with a low fidelity model showed high accuracy, however it would lack several modules required for it to be called a digital twin. The higher fidelity model showed that finding the stiffness parameter proves challenging, due to high stiffness sensitivity as the experimental modelling demonstrates. Two industries that could have significant benefits from implementing digital twins are discussed; the offshore wind industry and shipping. Both have valuable assets, with reliability sensitive systems and high costs of downtime and maintenance. Regarding the shipping industry an industrial case study is done. Area of extra focus is operations of Ro-Ro (roll on-roll off) vessels. The vessels in the case study are managed by Wilhelmsen Ship Management and a discussion of the implementation of digital twins in this sector is comprised in this article.


Sign in / Sign up

Export Citation Format

Share Document