scholarly journals Topology Optimization of Multi-Materials Compliant Mechanisms

2021 ◽  
Vol 11 (9) ◽  
pp. 3828
Author(s):  
Wenjie Ge ◽  
Xin Kou

In this article, a design method of multi-material compliant mechanism is studied. Material distribution with different elastic modulus is used to meet the rigid and flexible requirements of compliant mechanism at the same time. The solid isotropic material with penalization (SIMP) model is used to parameterize the design domain. The expressions for the stiffness matrix and equivalent elastic modulus under multi-material conditions are proposed. The least square error (LSE) between the deformed and target displacement of the control points is defined as the objective function, and the topology optimization design model of multi-material compliant mechanism is established. The oversaturation problem in the volume constraint is solved by pre-setting the priority of each material, and the globally convergent method of moving asymptotes (GCMMA) is used to solve the problem. Widely studied numerical examples are conducted, which demonstrate the effectiveness of the proposed method.

Author(s):  
Masakazu Kobayashi ◽  
Hiroshi Yamakawa ◽  
Shinji Nishiwaki ◽  
Kazuhiro Izui ◽  
Masataka Yoshimura

Compliant mechanisms generated by traditional topology optimization methods have linear output response, and it is difficult for traditional methods to implement mechanisms having non-linear output responses, such as nonlinear deformation or path. To design a compliant mechanism having a specified nonlinear output path, a two-stage design method based on topology and shape optimization is constructed here. In the first stage, topology optimization generates an initial and conceptual compliant mechanism based on ordinary design conditions, with “additional” constraints that are used to control the output path at the second stage. In the second stage, an initial model for the shape optimization is created, based on the result of the topology optimization, and the additional constraints are replaced by spring elements. The shape optimization is then executed, to generate a detailed shape of the compliant mechanism having the desired output path. In this stage, parameters that represent the outer shape of the compliant mechanism and the properties of spring elements are used as design variables in the shape optimization. In addition to configuration of the specified output path, executing the shape optimization after the topology optimization also makes it possible to consider the stress concentration and large displacement effects. This is an advantage offered by the proposed method, since it is difficult for traditional methods to consider these aspects, due to inherent limitations of topology optimization.


Author(s):  
Zhaokun Li ◽  
Xianmin Zhang

Since compliant mechanism is usually required to perform in more than one environment, the ability to consider multiple objectives has to be included within the framework of topology optimization. And the topology optimization of micro-compliant mechanisms is actually a geometrically nonlinear problem. This paper deals with multiobjective topology optimization of micro-compliant mechanisms undergoing large deformation. The objective function is defined by the minimum compliance and maximum geometric advantage to design a mechanism which meets both stiffness and flexibility requirements. The weighted sum of conflicting objectives resulting from the norm method is used to generate the optimal compromise solutions, and the decision function is set to select the preferred solution. Geometrically nonlinear structural response is calculated using a Total-Lagrange finite element formulation and the equilibrium is found using an incremental scheme combined with Newton-Raphson iterations. The solid isotropic material with penalization approach is used in design of compliant mechanisms. The sensitivities of the objective functions are found with the adjoint method and the optimization problem is solved using the Method of Moving Asymptotes. These methods are further investigated and realized with the numerical example of compliant microgripper, which is simulated to show the availability of this approach proposed in this paper.


Author(s):  
Masakazu Kobayashi ◽  
Shinji Nishiwaki ◽  
Masatake Higashi

This paper proposes a multi-stage design method for a design of practical compliant mechanisms. The proposed method consists of topology and shape optimizations and a shape conversion method that incorporates two optimizations. In the 1st stage, an initial and conceptual compliant mechanism is created by topology optimization. In the 2nd stage, an initial model of shape optimization is created from the result of topology optimization by the shape conversion method based on the level set method. In the 3rd stage, the shape optimization yields a detailed shape of the compliant mechanism by considering non-linear deformation and stress concentration. Execution of the shape optimization after the topology optimization enables evaluation of stress concentration and large deformation effect that are normally difficult for the traditional topology optimization. On the other side, the precise conversion from the model by topology optimization to the one for the shape optimization becomes possible by the shape conversion method that is utilizing the level set method. Using the proposed multi-stage method, a practical compliant mechanism can be designed with the designer’s minimum efforts that are indications of design conditions of the topology and shape optimizations and several parameters and threshold values of the shape conversion method.


2007 ◽  
Vol 19 (2) ◽  
pp. 141-147
Author(s):  
Masakazu Kobayashi ◽  
◽  
Shinji Nishiwaki ◽  
Hiroshi Yamakawa ◽  
◽  
...  

Compliant mechanisms designed by traditional topology optimization have a linear output response, and it is difficult for traditional methods to implement mechanisms having nonlinear output responses, such as nonlinear deformation or path. To design a compliant mechanism having a specified nonlinear output path, we propose a two-stage design method based on topology and shape optimizations. In the first stage, topology optimization generates an initial conceptual compliant mechanism based on ordinary design conditions, with “additional” constraints used to control the output path in the second stage. In the second stage, an initial model for the shape optimization is created, based on the result of the topology optimization, and additional constraints are replaced by spring elements. The shape optimization is then executed, to generate the detailed shape of the compliant mechanism having the desired output path. At this stage, parameters that represent the outer shape of the compliant mechanism and of spring element properties are used as design variables in the shape optimization. In addition to configuring the specified output path, executing the shape optimization after the topology optimization also makes it possible to consider the stress concentration and large displacement effects. This is an advantage offered by the proposed method, because it is difficult for traditional methods to consider these aspects, due to inherent limitations of topology optimization.


2001 ◽  
Author(s):  
Hima Maddisetty ◽  
Mary Frecker

Abstract Piezoceramic actuators have gained widespread use due to their desirable qualities of high force, high bandwidth, and high energy density. Compliant mechanisms can be designed for maximum stroke amplification of piezoceramic actuators using topology optimization. In this paper, the mechanical efficiency and other performance metrics of such compliant mechanism/actuator systems are studied. Various definitions of efficiency and other performance metrics of actuators with amplification mechanisms from the literature are reviewed. These metrics are then applied to two compliant mechanism example problems and the effect of the stiffness of the external load is investigated.


2010 ◽  
Vol 132 (11) ◽  
Author(s):  
Hong Zhou

The hybrid discretization model for topology optimization of compliant mechanisms is introduced in this paper. The design domain is discretized into quadrilateral design cells. Each design cell is further subdivided into triangular analysis cells. This hybrid discretization model allows any two contiguous design cells to be connected by four triangular analysis cells whether they are in the horizontal, vertical, or diagonal direction. Topological anomalies such as checkerboard patterns, diagonal element chains, and de facto hinges are completely eliminated. In the proposed topology optimization method, design variables are all binary, and every analysis cell is either solid or void to prevent the gray cell problem that is usually caused by intermediate material states. Stress constraint is directly imposed on each analysis cell to make the synthesized compliant mechanism safe. Genetic algorithm is used to search the optimum and to avoid the need to choose the initial guess solution and conduct sensitivity analysis. The obtained topology solutions have no point connection, unsmooth boundary, and zigzag member. No post-processing is needed for topology uncertainty caused by point connection or a gray cell. The introduced hybrid discretization model and the proposed topology optimization procedure are illustrated by two classical synthesis examples of compliant mechanisms.


Author(s):  
Hong Zhou ◽  
Nitin M. Dhembare

The design domain of a synthesized compliant mechanism is discretized into quadrilateral design cells in both hybrid and quadrilateral discretization models. However, quadrilateral discretization model allows for point connection between two diagonal design cells. Hybrid discretization model completely eliminates point connection by subdividing each quadrilateral design cell into triangular analysis cells and connecting any two contiguous quadrilateral design cells using four triangular analysis cells. When point connection is detected and suppressed in quadrilateral discretization, the local topology search space is dramatically reduced and slant structural members are serrated. In hybrid discretization, all potential local connection directions are utilized for topology optimization and any structural members can be smooth whether they are in the horizontal, vertical or diagonal direction. To compare the performance of hybrid and quadrilateral discretizations, the same design and analysis cells, genetic algorithm parameters, constraint violation penalties are employed for both discretization models. The advantages of hybrid discretization over quadrilateral discretization are obvious from the results of two classical synthesis examples of compliant mechanisms.


Sign in / Sign up

Export Citation Format

Share Document