scholarly journals Investigation on Dynamic Characteristics of the Reed Valve in Compressors Based on Fluid-Structure Interaction Method

2021 ◽  
Vol 11 (9) ◽  
pp. 3946
Author(s):  
Yanfeng Wang ◽  
Jin Wang ◽  
Zhilong He ◽  
Junwei Sun ◽  
Tao Wang ◽  
...  

The flow in the gap between the reed and the valve seat has a significant influence on the dynamic characteristics of the reed valve used in reciprocating compressors. The fluid–structure interaction (FSI) method is an effective method for studying reciprocating compressors. A three-dimensional FSI model of a reciprocating compressor with a reed valve is established in this paper, which has an important influence on the flow rate characteristic of reciprocating compressors. Furthermore, an experimental investigation is implemented to verify the FSI model. Based on the established FSI model, the pressure distribution on the reed valve surface is identified by varying the height of the suction valve limiter and the rotational speed of the compressor, which has an important effect on the dynamic characteristics of the reed valve. Although the low-pressure region, due to the Bernoulli effect on the surface of the reed, hinders the rapid opening of the valve to some extent, it is obviously beneficial to the timely closure of the valve and increases the volumetric efficiency of the compressor. Moreover, the optimal height of the valve limiter and the appropriate rotational speed of the compressor are obtained.

Perfusion ◽  
2021 ◽  
pp. 026765912199854
Author(s):  
Mohammad Javad Ghasemi Pour ◽  
Kamran Hassani ◽  
Morteza Khayat ◽  
Shahram Etemadi Haghighi

Background and objectives: Fluid structure interaction (FSI) is defined as interaction of the structures with contacting fluids. The aortic valve experiences the interaction with blood flow in systolic phase. In this study, we have tried to predict the hemodynamics of blood flow through a normal and stenotic aortic valve in two relaxation and exercise conditions using a three-dimensional FSI method. Methods: The aorta valve was modeled as a three-dimensional geometry including a normal model and two others with 25% and 50% stenosis. The geometry of the aortic valve was extracted from CT images and the models were generated by MMIMCS software and then they were implemented in ANSYS software. The pulsatile flow rate was used for all cases and the numerical simulations were conducted based on a time-dependent domain. Results: The obtained results including the velocity, pressure, and shear stress contours in different systolic time sequences were explained and discussed. The maximum blood flow velocity in relaxation phase was obtained 1.62 m/s (normal valve), 3.78 m/s (25% stenosed valve), and 4.73 m/s (50% stenosed valve). In exercise condition, the maximum velocities are 2.86, 4.32, and 5.42 m/s respectively. The maximum blood pressure in relaxation phase was calculated 111.45 mmHg (normal), 148.66 mmHg (25% stenosed), and 164.21 mmHg (50% stenosed). However, the calculated values in exercise situation were 129.57, 163.58, and 191.26 mmHg. The validation of the predicted results was also conducted using existing literature. Conclusions: We believe that such model are useful tools for biomechanical experts. The further studies should be done using experimental data and the data are implemented on the boundary conditions for better comparison of the results.


Author(s):  
Fande Kong ◽  
Xiao-Chuan Cai

Fluid-structure interaction (FSI) problems are computationally very challenging. In this paper we consider the monolithic approach for solving the fully coupled FSI problem. Most existing techniques, such as multigrid methods, do not work well for the coupled system since the system consists of elliptic, parabolic and hyperbolic components all together. Other approaches based on direct solvers do not scale to large numbers of processors. In this paper, we introduce a multilevel unstructured mesh Schwarz preconditioned Newton–Krylov method for the implicitly discretized, fully coupled system of partial differential equations consisting of incompressible Navier–Stokes equations for the fluid flows and the linear elasticity equation for the structure. Several meshes are required to make the solution algorithm scalable. This includes a fine mesh to guarantee the solution accuracy, and a few isogeometric coarse meshes to speed up the convergence. Special attention is paid when constructing and partitioning the preconditioning meshes so that the communication cost is minimized when the number of processor cores is large. We show numerically that the proposed algorithm is highly scalable in terms of the number of iterations and the total compute time on a supercomputer with more than 10,000 processor cores for monolithically coupled three-dimensional FSI problems with hundreds of millions of unknowns.


Author(s):  
Saeed Hosseinzadeh ◽  
Kristjan Tabri

The present study is concerned with the numerical simulation of Fluid-Structure Interaction (FSI) on a deformable three-dimensional hydrofoil in a turbulent flow. The aim of this work is to develop a strongly coupled two-way fluid-structure interaction methodology with a sufficiently high spatial accuracy to examine the effect of turbulent and cavitating flow on the hydroelastic response of a flexible hydrofoil. A 3-D cantilevered hydrofoil with two degrees-of-freedom is considered to simulate the plunging and pitching motion at the foil tip due to bending and twisting deformation. The defined problem is numerically investigated by coupled Finite Volume Method (FVM) and Finite Element Method (FEM) under a two-way coupling method. In order to find a better understanding of the dynamic FSI response and stability of flexible lifting bodies, the fluid flow is modeled in the different turbulence models and cavitation conditions. The flow-induced deformation and elastic response of both rigid and flexible hydrofoils at various angles of attack are studied. The effect of three-dimension body, pressure coefficient at different locations of the hydrofoil, leading-edge and trailing-edge deformation are presented and the results show that because of elastic deformation, the angle of attack increases and it lead to higher lift and drag coefficients. In addition, the deformations are generally limited by stall condition and because of unsteady vortex shedding, the post-stall condition should be considered in FSI simulation of deformable hydrofoil. To evaluate the accuracy of the numerical model, the present results are compared and validated against published experimental data and showed good agreement.


Sign in / Sign up

Export Citation Format

Share Document