scholarly journals Energy-Efficient Load Balancing Algorithm for Workflow Scheduling in Cloud Data Centers Using Queuing and Thresholds

2021 ◽  
Vol 11 (13) ◽  
pp. 5849
Author(s):  
Nimra Malik ◽  
Muhammad Sardaraz ◽  
Muhammad Tahir ◽  
Babar Shah ◽  
Gohar Ali ◽  
...  

Cloud computing is a rapidly growing technology that has been implemented in various fields in recent years, such as business, research, industry, and computing. Cloud computing provides different services over the internet, thus eliminating the need for personalized hardware and other resources. Cloud computing environments face some challenges in terms of resource utilization, energy efficiency, heterogeneous resources, etc. Tasks scheduling and virtual machines (VMs) are used as consolidation techniques in order to tackle these issues. Tasks scheduling has been extensively studied in the literature. The problem has been studied with different parameters and objectives. In this article, we address the problem of energy consumption and efficient resource utilization in virtualized cloud data centers. The proposed algorithm is based on task classification and thresholds for efficient scheduling and better resource utilization. In the first phase, workflow tasks are pre-processed to avoid bottlenecks by placing tasks with more dependencies and long execution times in separate queues. In the next step, tasks are classified based on the intensities of the required resources. Finally, Particle Swarm Optimization (PSO) is used to select the best schedules. Experiments were performed to validate the proposed technique. Comparative results obtained on benchmark datasets are presented. The results show the effectiveness of the proposed algorithm over that of the other algorithms to which it was compared in terms of energy consumption, makespan, and load balancing.

2017 ◽  
Vol 16 (3) ◽  
pp. 6247-6253
Author(s):  
Ashima Ashima ◽  
Mrs Navjot Jyoti

Cloud computing is a vigorous technology by which a user can get software, application, operating system and hardware as a service without actually possessing it and paying only according to the usage. Cloud Computing is a hot topic of research for the researchers these days. With the rapid growth of Interne technology cloud computing have become main source of computing for small as well big IT companies. In the cloud computing milieu the cloud data centers and the users of the cloud-computing are globally situated, therefore it is a big challenge for cloud data centers to efficiently handle the requests which are coming from millions of users and service them in an efficient manner. Load balancing is a critical aspect that ensures that all the resources and entities are well balanced such that no resource or entity neither is under loaded nor overloaded. The load balancing algorithms can be static or dynamic.  Load balancing in this environment means equal distribution of workload across all the nodes. Load balancing provides a way of achieving the proper utilization of resources and better user satisfaction. Hence, use of an appropriate load balancing algorithm is necessary for selecting the virtual machines or servers. This paper focuses on the load balancing algorithm which distributes the incoming jobs among VMs optimally in cloud data centers. In this paper, we have reviewed several existing load balancing mechanisms and we have tried to address the problems associated with them.


2017 ◽  
Vol 16 (6) ◽  
pp. 6953-6961
Author(s):  
Kavita Redishettywar ◽  
Prof. Rafik Juber Thekiya

Cloud computing is a vigorous technology by which a user can get software, application, operating system and hardware as a service without actually possessing it and paying only according to the usage. Cloud Computing is a hot topic of research for the researchers these days. With the rapid growth of Interne technology cloud computing have become main source of computing for small as well big IT companies. In the cloud computing milieu the cloud data centers and the users of the cloud-computing are globally situated, therefore it is a big challenge for cloud data centers to efficiently handle the requests which are coming from millions of users and service them in an efficient manner. Load balancing ensures that no single node will be overloaded and used to distribute workload among multiple nodes. It helps to improve system performance and proper utilization of resources. We propose an improved load balancing algorithm for job scheduling in the cloud environment using K-Means clustering of cloudlets and virtual machines in the cloud environment. All the cloudlets given by the user are divided into 3 clusters depending upon client’s priority, cost and instruction length of the cloudlet. The virtual machines inside the datacenter hosts are also grouped into multiple clusters depending upon virtual machine capacity in terms of processor, memory, and bandwidth. Sorting is applied at both the ends to reduce the latency. Multiple number of experiments have been conducted by taking different configurations of cloudlets and virtual machine. Various parameters like waiting time, execution time, turnaround time and the usage cost have been computed inside the cloudsim environment to demonstrate the results. Compared with the other job scheduling algorithms, the improved load balancing algorithm can outperform them according to the experimental results.


2018 ◽  
Vol 17 (2) ◽  
pp. 7261-7272 ◽  
Author(s):  
Ishaan Chawla

Cloud computing is a vigorous technology by which a user can get software, application, operating system and hardware as a service without actually possessing it and paying only according to the usage. Cloud Computing is a hot topic of research for the researchers these days. With the rapid growth of Internet technology cloud computing have become main source of computing for small as well big IT companies. In the cloud computing milieu the cloud data centers and the users of the cloud-computing are globally situated, therefore it is a big challenge for cloud data centers to efficiently handle the requests which are coming from millions of users and service them in an efficient manner.Cloud computing is Internet based development and use of computer technology. It is a style of computing in which dynamically scalable and often virtualized resources are provided as a service over the Internet. Users need not have knowledge of, expertise in, or control over the technology infrastructure "in the cloud" that supports them. Scheduling is one of the core steps to efficiently exploit the capabilities of heterogeneous computing systems. On cloud computing platform, load balancing of the entire system can be  dynamically handled  by  using  virtualization  technology through which it  becomes  possible  to  remap  virtual  machine  and physical resources  according  to  the  change  in  load. However, in order to improve performance, the virtual machines have to fully utilize its resources and services by adapting to computing environment dynamically.  The  load balancing  with  proper  allocation  of  resources  must  be guaranteed  in  order  to  improve  resource  utility.  Load balancing is a critical aspect that ensures that all the resources and entities are well balanced such that no resource or entity neither is under loaded nor overloaded. The load balancing algorithms can be static or dynamic.  Load balancing in this environment means equal distribution of workload across all the nodes. Load balancing provides a way of achieving the proper utilization of resources and better user satisfaction. Hence, use of an appropriate load balancing algorithm is necessary for selecting the virtual machines or servers. This paper focuses on the load balancing algorithm which distributes the incoming jobs among VMs optimally in cloud data centers. In this paper, we have reviewed several existing load balancing mechanisms and we have tried to address the problems associated with them.


2014 ◽  
Vol 1008-1009 ◽  
pp. 1513-1516
Author(s):  
Hai Na Song ◽  
Xiao Qing Zhang ◽  
Zhong Tang He

Cloud computing environment is regarded as a kind of multi-tenant computing mode. With virtulization as a support technology, cloud computing realizes the integration of multiple workloads in one server through the package and seperation of virtual machines. Aiming at the contradiction between the heterogeneous applications and uniform shared resource pool, using the idea of bin packing, the multidimensional resource scheduling problem is analyzed in this paper. We carry out some example analysis in one-dimensional resource scheduling, two-dimensional resource schduling and three-dimensional resource scheduling. The results shows that the resource utilization of cloud data centers will be improved greatly when the resource sheduling is conducted after reorganizing rationally the heterogeneous demands.


2017 ◽  
Vol 10 (13) ◽  
pp. 162
Author(s):  
Amey Rivankar ◽  
Anusooya G

Cloud computing is the latest trend in large-scale distributed computing. It provides diverse services on demand to distributive resources such asservers, software, and databases. One of the challenging problems in cloud data centers is to manage the load of different reconfigurable virtual machines over one another. Thus, in the near future of cloud computing field, providing a mechanism for efficient resource management will be very significant. Many load balancing algorithms have been already implemented and executed to manage the resources efficiently and adequately. The objective of this paper is to analyze shortcomings of existing algorithms and implement a new algorithm which will give optimized load balancingresult.


Sensors ◽  
2019 ◽  
Vol 19 (12) ◽  
pp. 2724 ◽  
Author(s):  
Yuan ◽  
Sun

High-energy consumption in data centers has become a critical issue. The dynamic server consolidation has significant effects on saving energy of a data center. An effective way to consolidate virtual machines is to migrate virtual machines in real time so that some light load physical machines can be turned off or switched to low-power mode. The present challenge is to reduce the energy consumption of cloud data centers. In this paper, for the first time, a server consolidation algorithm based on the culture multiple-ant-colony algorithm was proposed for dynamic execution of virtual machine migration, thus reducing the energy consumption of cloud data centers. The server consolidation algorithm based on the culture multiple-ant-colony algorithm (CMACA) finds an approximate optimal solution through a specific target function. The simulation results show that the proposed algorithm not only reduces the energy consumption but also reduces the number of virtual machine migration.


2019 ◽  
Vol 16 (9) ◽  
pp. 3989-3994
Author(s):  
Jaspreet Singh ◽  
Deepali Gupta ◽  
Neha Sharma

Nowadays, Cloud computing is developing quickly and customers are requesting more administrations and superior outcomes. In the cloud domain, load balancing has turned into an extremely intriguing and crucial research area. Numbers of algorithms were recommended to give proficient mechanism for distributing the cloud user’s requests for accessing pool cloud resources. Also load balancing in cloud should provide notable functional benefits to cloud users and at the same time should prove out to be eminent for cloud services providers. In this paper, the pre-existing load balancing techniques are explored. The paper intends to provide landscape for classification of distinct load balancing algorithms based upon the several parameters and also address performance assessment bound to various load balancing algorithms. The comparative assessment of various load balancing algorithms will helps in proposing a competent load balancing technique for intensify the performance of cloud data centers.


Author(s):  
Deepika T. ◽  
Prakash P.

The flourishing development of the cloud computing paradigm provides several services in the industrial business world. Power consumption by cloud data centers is one of the crucial issues for service providers in the domain of cloud computing. Pursuant to the rapid technology enhancements in cloud environments and data centers augmentations, power utilization in data centers is expected to grow unabated. A diverse set of numerous connected devices, engaged with the ubiquitous cloud, results in unprecedented power utilization by the data centers, accompanied by increased carbon footprints. Nearly a million physical machines (PM) are running all over the data centers, along with (5 – 6) million virtual machines (VM). In the next five years, the power needs of this domain are expected to spiral up to 5% of global power production. The virtual machine power consumption reduction impacts the diminishing of the PM’s power, however further changing in power consumption of data center year by year, to aid the cloud vendors using prediction methods. The sudden fluctuation in power utilization will cause power outage in the cloud data centers. This paper aims to forecast the VM power consumption with the help of regressive predictive analysis, one of the Machine Learning (ML) techniques. The potency of this approach to make better predictions of future value, using Multi-layer Perceptron (MLP) regressor which provides 91% of accuracy during the prediction process.


Internet of Things (IoT) and Internet of Mobile Things (IoMT) acquired widespread popularity by its ease of deployment and support for innovative applications. The sensed and aggregated data from IoT and IoMT are transferred to Cloud through Internet for analysis, interpretation and decision making. In order to generate timely response and sending back the decisions to the end users or Administrators, it is important to select appropriate cloud data centers which would process and produce responses in a shorter time. Beside several factors that determine the performance of the integrated 6LOWPAN and Cloud Data Centers, we analyze the available bandwidth between various user bases (IoT and IoMT networks) and the cloud data centers. Amidst of various services offered in cloud, problems such as congestion, delay and poor response time arises when the number of user request increases. Load balancing/sharing algorithms are the popularly used techniques to improve the performance of the cloud system. Load refers to the number of user requests (Data) from different types of networks such as IoT and IoMT which are IPv6 compliant. In this paper we investigate the impact of homogeneous and heterogeneous bandwidth between different regions in load balancing algorithms for mapping user requests (Data) to various virtual machines in Cloud. We investigate the influence of bandwidth across different regions in determining the response time for the corresponding data collected from data harvesting networks. We simulated the cloud environment with various bandwidth values between user base and data centers and presented the average response time for individual user bases. We used Cloud- Analyst an open source tool to simulate the proposed work. The obtained results can be used as a reference to map the mass data generated by various networks to appropriate data centers to produce the response in an optimal time.


Sign in / Sign up

Export Citation Format

Share Document