scholarly journals A Simple Two-Stage AC-AC Circuit Topology Employed as High-Frequency Controller for Domestic Induction Heating System

2021 ◽  
Vol 11 (18) ◽  
pp. 8325
Author(s):  
Naveed Ashraf ◽  
Ghulam Abbas ◽  
Nasim Ullah ◽  
Ahmad Aziz Alahmadi ◽  
Ahmed Bilal Awan ◽  
...  

The induction heating process at a domestic level is getting attention nowadays as this power converting topology ensures clean, reliable, flexible, and fast operation. The low input frequency is converted to required regulated high output frequency with indirect and direct power converting approaches. The circuit and control complexity and high conversion losses associated with indirect power converting approaches lower their uses for domestic induction systems. The direct ac-ac power conversion approach is one of the viable solutions for low and medium power level loads, especially for domestic induction heating loads. The circuit complexity, cost, and conversion losses of the direct power converting systems depend on the number of the controlled switching devices as each controlled switch requires one gate driving circuit and one isolated dc supply. Simplified pulse width modulation (PWM) switching control also lower their control effort. Therefore, in this article, a simplified direct ac-ac power converting approach is introduced for a high-frequency domestic induction heating system. Here, the regulation of the high output frequency is achieved by simply cascading the single-phase full-bridge rectifier with a full-bridge inverter with a simple control strategy. The characteristics of the developed topology are validated through simulation results of the Simulink-based platform and practical results of the developed practical setup.

Abstract Besides the induction coil and workpiece, the induction generator (source of ac power) is probably the most important component of an overall induction heating system. Such equipment is typically rated in terms of its frequency and maximum output power (in kilowatts). This chapter addresses the selection of power supplies in terms of these two factors as well as the operational features of different types of sources. The six different types of power supplies for induction heating applications covered in this chapter are line-frequency supplies, frequency multipliers, motor-generators, solid-state (static) inverters, spark-gap converters, and radio-frequency power supplies. The chapter discusses the design and characteristics of each of the various types of power supplies.


2003 ◽  
Vol 38 (9) ◽  
pp. 592-599
Author(s):  
Daichi Yoshida ◽  
Hiroyasu Kifune ◽  
Yoshihiro Hatanaka ◽  
Takao Takase ◽  
Masahiro Komatsu

2014 ◽  
Vol 622 ◽  
pp. 39-43 ◽  
Author(s):  
Nagarajan Booma ◽  
Rama Reddy Sathi ◽  
Vishuram Pradeep

This paper presents a combined asymmetrical voltage cancellation and pulse density modulation technique for energy efficient induction heating system. The proposed technique minimizes the switching losses through soft switching operation and improves the efficiency at low power level. In this modulation technique, the smooth power control can be achieved. The study of power converter has been performed through MATLAB simulation tool and the results are presented. In this proposal, the efficiency of PDM and AVC control techniques are compared with the Hybrid Modulation technique.


2012 ◽  
Vol 25 (3) ◽  
pp. 183-191 ◽  
Author(s):  
Ilona Iatcheva ◽  
Georgi Gigov ◽  
Georgi Kunov ◽  
Rumena Stancheva

The aim of the work is the investigation of induction heating system used for longitudinal, high frequency pipe welding.Coupled electromagnetic and temperature field distribution has been studied in order to estimate system efficiency and factors influencing the quality of the welding process and required energy. The problem was considered as three dimensional. Time harmonic electromagnetic and transient thermal field has been solved using finite element method and COMSOL 4.2 software package.


Sign in / Sign up

Export Citation Format

Share Document