scholarly journals Failure of Rock Slope with Heterogeneous Locked Patches: Insights from Numerical Modelling

2021 ◽  
Vol 11 (18) ◽  
pp. 8585
Author(s):  
Bin Fu ◽  
Yingchun Li ◽  
Chun’an Tang ◽  
Zhibin Lin

Rock slope stability is commonly dominated by locked patches along a potential slip surface. How naturally heterogeneous locked patches of different properties affect the rock slope stability remains enigmatic. Here, we simulate a rock slope with two locked patches subjected to shear loading through a self-developed software, rock failure process analysis (RFPA). In the finite element method (FEM)-based code, the inherent heterogeneity of rock is quantified by the classic Weibull distribution, and the constitutive relationship of the meso-scale element is formulated by the statistical damage theory. The effects of mechanical and geometrical properties of the locked patches on the stability of the simulated rock slope are systematically studied. We find that the rock homogeneity modulates the failure mode of the rock slope. As the homogeneity degree is elevated, the failure of the locked patch transits from the locked patch itself to both the interfaces between the locked patched and the slide body and the bedrock, and then to the bedrock. The analysis of variance shows that length and strength of locked patch affect most shear strength and the peak shear displacement of the rock slope. Most of the rock slopes exhibit similar failure modes where the macroscopic cracks mainly concentrate on the interfaces between the locked patch and the bedrock and the slide body, respectively, and the acoustic events become intensive after one of the locked patches is damaged. The locked patches are failed sequentially, and the sequence is apparently affected by their relative positions. The numerically reproduced failure mode of the rock slope with locked patches of different geometrical and mechanical properties are consistent with the laboratory observations. We also propose a simple spring-slider model to elucidate the failure process of the rock slope with locked patches.

2016 ◽  
Vol 2016 ◽  
pp. 1-14 ◽  
Author(s):  
Tianhui Ma ◽  
Long Wang ◽  
Fidelis Tawiah Suorineni ◽  
Chunan Tang

Severe damage occurs frequently in mine pillars subjected to shear stresses. The empirical design charts or formulas for mine pillars are not applicable to orebodies under shear. In this paper, the failure process of pillars under shear stresses was investigated by numerical simulations using the rock failure process analysis (RFPA) 2D software. The numerical simulation results indicate that the strength of mine pillars and the corresponding failure mode vary with different width-to-height ratios and dip angles. With increasing dip angle, stress concentration first occurs at the intersection between the pillar and the roof, leading to formation of microcracks. Damage gradually develops from the surface to the core of the pillar. The damage process is tracked with acoustic emission monitoring. The study in this paper can provide an effective means for understanding the failure mechanism, planning, and design of mine pillars.


2012 ◽  
Vol 446-449 ◽  
pp. 2048-2055
Author(s):  
Liang Qing Wang ◽  
P.H.S.W. Kulatilake ◽  
Hui Ming Tang ◽  
Ye Liang

Lithological information, rock mass fracture data and discontinuity shear strength obtained through field investigations have been used in conducting kinematic analyses for the rock slopes that exist in the Yujian River dam site to evaluate the stability of the slopes. Results given in the paper can be considered as conservative because of several conservative assumptions used in the analyses. Dam site slopes seem quite stable up to 40º dip angle. Out of the three basic failure modes, possible wedge sliding seems to be the most likely one followed up with possible plane sliding as the second. Irrespective of the considered slope regions, slope dip direction ranges 270-315º and 200-210º seem to be the worst cases for possible instability of slopes in the dam site. Regional slopes in the dam site can be ranked with respect to safety from the lowest to highest in the following order: R-c-1, R-e-2, R-c-2, R-d-1, R-b, R-a, R-d-2 and R-e-1. Note that the dam site slopes are currently stable and the existing slope angles agree well with the results obtained from the rock slope stability analyses.


Sign in / Sign up

Export Citation Format

Share Document