Rock Slope Stability Study for Yujian River Dam Site Based on Kinematic Analyses

2012 ◽  
Vol 446-449 ◽  
pp. 2048-2055
Author(s):  
Liang Qing Wang ◽  
P.H.S.W. Kulatilake ◽  
Hui Ming Tang ◽  
Ye Liang

Lithological information, rock mass fracture data and discontinuity shear strength obtained through field investigations have been used in conducting kinematic analyses for the rock slopes that exist in the Yujian River dam site to evaluate the stability of the slopes. Results given in the paper can be considered as conservative because of several conservative assumptions used in the analyses. Dam site slopes seem quite stable up to 40º dip angle. Out of the three basic failure modes, possible wedge sliding seems to be the most likely one followed up with possible plane sliding as the second. Irrespective of the considered slope regions, slope dip direction ranges 270-315º and 200-210º seem to be the worst cases for possible instability of slopes in the dam site. Regional slopes in the dam site can be ranked with respect to safety from the lowest to highest in the following order: R-c-1, R-e-2, R-c-2, R-d-1, R-b, R-a, R-d-2 and R-e-1. Note that the dam site slopes are currently stable and the existing slope angles agree well with the results obtained from the rock slope stability analyses.

2012 ◽  
Vol 446-449 ◽  
pp. 2048-2055
Author(s):  
Liang Qing Wang ◽  
P.H.S.W. Kulatilake ◽  
Hui Ming Tang ◽  
Ye Liang

2008 ◽  
Vol 96 (1-2) ◽  
pp. 17-27 ◽  
Author(s):  
Zulfu Gurocak ◽  
Selcuk Alemdag ◽  
Musharraf M. Zaman

2015 ◽  
Vol 6 (2) ◽  
Author(s):  
Faridha Aprilia ◽  
I Gde Budi Indrawan

The stability of rock slopes is controlled by several factors, such as the intact rock strength, discontinuity characteristics, groundwater condition, and slope geometry. Limit equilibrium (LE) analyses have been commonly used in geotechnical practice to evaluate the stability of rock slopes. A number of methods of LE analyses, ranging from simple to sophisticated methods, have been developed. This paper presents stability analyses of rock slopes at the Batu Hijau open mine in Sumbawa Barat using various methods of LE analyses. The LE analyses were conducted at three cross sections of the northern wall of the open mine using the Bishop Simplified, Janbu Simplified, Janbu Generalised, and General Limit Equilibrium (GLE) methods in Slide slope stability package. In addition, a Plane Failure (PF) analysis was performed manually. Shear strength data of the discontinuity planes used in the LE analyses were obtained from back analyses of previous rock slope failures. The LE analysis results showed that the rock slopes were likely to have shallow non-circular critical failure surfaces. The factor of safety (Fs) values obtained from the Bishop Simplified, Janbu Simplified, Janbu Generalised, and GLE methods were found to be similar, while the Fs values obtained from the PF method were higher than those obtained from the more rigorous methods. Keywords: Batu Hijau mine, Bishop Simplified, Janbu Simplified, Janbu Generalised, limit equilibrium analyses, general limit equilibrium, rock slope stability, plane failure.


2018 ◽  
Vol 2018 ◽  
pp. 1-16 ◽  
Author(s):  
K. Ma ◽  
N. W. Xu ◽  
Z. Z. Liang

A high-resolution microseismic (MS) monitoring system was implemented at the right bank slope of the Dagangshan hydropower station in May 2010 to analyse the slope stability subjected to continuous excavation. The MS monitoring system could real-time capture a large number of seismic events occurring inside the rock slope. The identification and delineation of rock mass damage subject to excavation and consolidation grouting can be conducted based on the analysis of tempospatial distribution of MS events. However, how to qualitatively evaluate the stability of the rock slope by utilizing these MS data remains challenging. A damage model based on MS data was proposed to analyse the rock mass damage, and a 3D finite element method model of the rock slope was also established. The deteriorated mechanical parameters of rock mass were determined according to the model elements considering the effect of MS damage. With this method, we can explore the effect of MS activities, which are caused by rock mass damage subjected to excavation and strength degradation to the dynamic instability of the slope. When the MS damage effect was taken into account, the safety factor of the rock slope was reduced by 0.18 compared to the original rock slope model without considering the effect. The simulated results show that MS activities, which are subjected to excavation unloading, have only a limited effect on the stability of the right bank slope. The proposed method is proven to be a better approach for the dynamical assessment of rock slope stability and will provide valuable references for other similar rock slopes.


2021 ◽  
Vol 11 (18) ◽  
pp. 8585
Author(s):  
Bin Fu ◽  
Yingchun Li ◽  
Chun’an Tang ◽  
Zhibin Lin

Rock slope stability is commonly dominated by locked patches along a potential slip surface. How naturally heterogeneous locked patches of different properties affect the rock slope stability remains enigmatic. Here, we simulate a rock slope with two locked patches subjected to shear loading through a self-developed software, rock failure process analysis (RFPA). In the finite element method (FEM)-based code, the inherent heterogeneity of rock is quantified by the classic Weibull distribution, and the constitutive relationship of the meso-scale element is formulated by the statistical damage theory. The effects of mechanical and geometrical properties of the locked patches on the stability of the simulated rock slope are systematically studied. We find that the rock homogeneity modulates the failure mode of the rock slope. As the homogeneity degree is elevated, the failure of the locked patch transits from the locked patch itself to both the interfaces between the locked patched and the slide body and the bedrock, and then to the bedrock. The analysis of variance shows that length and strength of locked patch affect most shear strength and the peak shear displacement of the rock slope. Most of the rock slopes exhibit similar failure modes where the macroscopic cracks mainly concentrate on the interfaces between the locked patch and the bedrock and the slide body, respectively, and the acoustic events become intensive after one of the locked patches is damaged. The locked patches are failed sequentially, and the sequence is apparently affected by their relative positions. The numerically reproduced failure mode of the rock slope with locked patches of different geometrical and mechanical properties are consistent with the laboratory observations. We also propose a simple spring-slider model to elucidate the failure process of the rock slope with locked patches.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Hongliang Tao ◽  
Guangli Xu ◽  
Jingwen Meng ◽  
Ronghe Ma ◽  
Jiaxing Dong

The stability of high rock slopes has become a key engineering geological problem in the construction of important projects in mountainous areas. The original slope stability probability classification (SSPC) system, presented by Hack, has made obvious progress and been widely used in rock slope stability analysis. However, the selection and determination of some evaluation indexes in the original SSPC method are usually subjective, such as intact rock strength and weathering degree. In this study, the SSPC method based on geological data obtained in the prospecting tunnels was presented and applied. According to the field survey and exploration of the prospecting tunnels, the weathering degree of the slope rock mass was evaluated. The empirical equation for the maximum stable height of the slope was applied to the slope stability evaluation in the presented SSPC method. Then, the slope stability probability of numerous cutting slopes in the sandstone unit was evaluated using the presented system. Results of the Geostudio software based on the limited equilibrium analysis of the investigated slopes were compared with the results obtained by the SSPC method. The results indicate that the SSPC method is a useful tool for the stability prediction of high and steep rock slopes.


2021 ◽  
Vol 18 (1) ◽  
pp. 36-43
Author(s):  
Hadeer Ghazi Adeeb ◽  
Ibrahim S. I. AL-JUMAILY

Geological discontinuities play a significant role in the assessment of rock slope stability. Rock slope stability has been studied on the main road between Sulav and Amadiya resorts in Duhok governorate on the southern limb of Mateen anticline, to determine the expected rock slides on this road. Five (5) stations were chosen to study these rock slides that may occur on these steep slopes. All these stations within Pila Spi Formation that consists of hard dolomitic limestone and covering the areas from Sulav resort towards Amadiya district with a length of up to 2.5 Kms. The Stereographic analysis was used to study and classify the stability of these slopes. The analysis showed in all stations the possibility of plane sliding to happen on the bedding plane, and the wedge sliding between the bedding plane and planes of all joint sets, as well as the occurrence of rockfall on some stations.


Sign in / Sign up

Export Citation Format

Share Document