scholarly journals Towards an Efficient Chipless RFID System for Modern Applications in IoT Networks

2021 ◽  
Vol 11 (19) ◽  
pp. 8948
Author(s):  
Wazie M. Abdulkawi ◽  
N. Nizam-Uddin ◽  
Abdel Fattah A. Sheta ◽  
Ibrahim Elshafiey ◽  
Abdullah M. Al-Shaalan

In this article, we present the design and validation of an efficient chipless RFID system. A multi-resonator chipless tag is designed and tested for high bit coding capacity. A high gain, ultra-wideband step-shape rectangular patch (USRP) antenna is proposed to validate the specificity of the tag in terms of its operation. The devised antenna is evaluated for various performance parameters, which recommend its suitability for testing and validation of high-capacity tags that can be deployed in modern applications, particularly in the Internet of Things (IoT) networks. A measurement setup is established to achieve performance validation of the tag over a significant range of 40 cm. There is close agreement between the measured and simulated results, which suggests that the proposed antenna system can be adopted in a similar measurement setup to test and validate the performance of any chipless RFID tag operating in the same bandwidth meant for IoT networks.

2018 ◽  
Vol 10 (2) ◽  
pp. 187-195 ◽  
Author(s):  
Maher Khaliel ◽  
Ahmed El-Awamry ◽  
Abdelfattah Fawky ◽  
Thomas Kaiser

AbstractThis work proposes the utilization of a high gain and pencil beam reflectarray (RA) antenna at the reader of the frequency coded (FC) chipless radio-frequency identification (RFID) system to minimize the environmental reflections and increase the reading range. Moreover, the reader antenna should operate over ultra wideband (UWB) range of frequencies to accommodate multiple bits. However, the conventional antenna arrays cannot operate over UWB range of frequencies with high gain and pencil beam characteristics. Therefore, a novel UWB RA antenna dedicated to the chipless RFID reader is developed. The developed RA antenna operates over UWB range of frequencies from 4 to 6GHzto fulfill the requirements of the FC chipless RFID system. Therefore, the antenna is successfully integrated with the FC chipless RFID tags, and a reading range of 1mis achieved.


Author(s):  
Shahid Habib ◽  
Amjad Ali ◽  
Ghaffer Iqbal Kiani ◽  
Wagma Ayub ◽  
Syed Muzahir Abbas ◽  
...  

Abstract This paper presents a polarization-independent 11-bit chipless RFID tag based on frequency-selective surface which has been designed for encoding and relative humidity (RH) sensing applications. The 10 exterior U-shaped resonators are used for item encoding whereas Kapton has been incorporated with the interior resonator for RH sensing. This radio-frequency identification (RFID) tag operates in S- and C-frequency bands. The proposed design offers enhanced fractional bandwidth up to 88% with the density of 4.46 bits/cm2. Both single- and dual-layer tags have been investigated. The simulated results are in good agreement with measured results and a comparison with existing literature is presented to show the performance. Simple geometry, high code density, large frequency signature bandwidth, high magnitude bit, high radar cross-section, and angular stability for more than 75° are the unique outcomes of the proposed design. In addition, RH sensing has been achieved by integrating the Kapton on the same RFID tag.


Author(s):  
Kawther Mekki ◽  
Omrane Necibi ◽  
Hugo Dinis ◽  
Paulo Mendes ◽  
Ali Gharsallah

Abstract In order to encrypt/encode data based on the magnitude level of the radar cross-section (RCS), we propose an approach with a precise estimation considering the resonant characteristics of a multipatch backscatter-based chipless radio frequency identification (RFID) dedicated for chipless tags depolarization. The working principle is based on the polarization mismatch between the tag and the reader antenna to control the magnitude of the backscatter, which allows a reliable detection in real environments. We introduce in this paper a new 4-bit chipless RFID tag with an enhanced RCS, based on a triangular patch antenna with multiple resonators. Additionally, we propose an ultra-wideband impulse radar (UWB-IR)-based reader that interrogates the chipless tag with a UWB pulse, and the received backscatter was studied in both time- and frequency-domains. The antenna was operating from 4.7 to 6.1 GHz, a band allocated for RFID systems. The obtained experimental measurement results in the environment of anechoic chamber were exceptionally relevant to validate the simulation results.


Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2525
Author(s):  
Kawther Mekki ◽  
Omrane Necibi ◽  
Hugo Dinis ◽  
Paulo Mendes ◽  
Ali Gharsallah

A novel methodology is proposed to reliably predict the resonant characteristics of a multipatch backscatter-based radio frequency identification (RFID) chipless tag. An ultra-wideband impulsion radio (UWB-IR)-based reader interrogates the chipless tag with a UWB pulse, and analyzes the obtained backscatter in the time domain. The RFID system consists of a radar cross-section (RCS)-based chipless tag containing a square microstrip patch antenna array in which the chipless tag is interrogated with a UWB pulse by an UWB-IR-based reader. The main components of the backscattered signal, the structural mode, and the antenna mode were identified and their spectral quality was evaluated. The study revealed that the antenna-mode backscatter includes signal carrying information, while the structural mode backscatter does not include any tag information. The simulation findings were confirmed by experimental measurements obtained in an anechoic chamber environment using a 6-bit multipatch chipless RFID tag. Finally, the novel technique does not use calibration tags and can freely orient tags with respect to the reader.


2015 ◽  
Vol 63 (4) ◽  
pp. 1789-1797 ◽  
Author(s):  
Caixia Feng ◽  
Wenmei Zhang ◽  
Li Li ◽  
Liping Han ◽  
Xinwei Chen ◽  
...  
Keyword(s):  
Rfid Tag ◽  

IEEE Access ◽  
2021 ◽  
Vol 9 ◽  
pp. 33929-33943
Author(s):  
Mohd Ezwan B Jalil ◽  
Mohamad Kamal A Rahim ◽  
Himdi Mohamed ◽  
Noor Asmawati Binti Samsuri ◽  
Noor Asniza Murad ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document