scholarly journals A New GaN HEMT Small-Signal Model Considering Source via Effects for 5G Millimeter-Wave Power Amplifier Design

2021 ◽  
Vol 11 (19) ◽  
pp. 9120
Author(s):  
Jihoon Kim

A new gallium nitride (GaN) high electron mobile transistor (HEMT) small-signal model is proposed considering source via effects. In general, GaN HEMTs adopt a source via structure to reduce device degradation due to self-heating. In this paper, the modified drain-source capacitance (Cds) circuit considering the source via structure is proposed. GaN HEMTs fabricated using a commercial 0.15 μm GaN HEMT process are measured with a 67 GHz vector network analyzer (VNA). The fabricated device is an individual source via (ISV) type. As a result, it is difficult to predict the measured S12 in the conventional small-signal model equivalent circuit. This causes errors in maximum stable gain/maximum available gain (MSG/MAG) and stability factor (K), which are important for circuit design. This paper proposes a small-signal equivalent circuit that adds the drain-source inductance to the drain-source capacitance considering the source via structure. The proposed equivalent circuit better reproduces the measured S12 without compromising the accuracy of other S-parameters up to 67 GHz and improves the accuracy of MSG/MAG and K. It is expected that the proposed model can be utilized in a large-signal model for 5G millimeter-wave GaN HEMT power amplifier design in the future.

Electronics ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 263
Author(s):  
Roberto Quaglia

In high-frequency power-amplifier design, it is common practice to approach the design of reactive matching networks using linear simulators and targeting a reflection loss limit (referenced to the target impedance). It is well known that this is only a first-pass design technique, since output power or efficiency contours do not correspond to mismatch circles. This paper presents a method to improve the accuracy of this approach in the case of matching network design for power amplifiers based on gallium nitride (GaN) technology. Equivalent mismatch circles, which lay within the power or efficiency contours targeted by the design, are analytically obtained thanks to geometrical considerations. A summary table providing the parameters to use for typical contours is provided. The technique is demonstrated on two examples of power-amplifier design on the 6–12 GHz band using the non-linear large-signal model of a GaN High Electron Mobility Transistor (HEMT).


2013 ◽  
Vol 54 ◽  
pp. 188-203 ◽  
Author(s):  
D. Godwinraj ◽  
Hemant Pardeshi ◽  
Sudhansu Kumar Pati ◽  
N. Mohankumar ◽  
Chandan Kumar Sarkar

2014 ◽  
Vol 6 (3-4) ◽  
pp. 243-251 ◽  
Author(s):  
Tom K. Johansen ◽  
Matthias Rudolph ◽  
Thomas Jensen ◽  
Tomas Kraemer ◽  
Nils Weimann ◽  
...  

In this paper, the small- and large-signal modeling of InP heterojunction bipolar transistors (HBTs) in transferred substrate (TS) technology is investigated. The small-signal equivalent circuit parameters for TS-HBTs in two-terminal and three-terminal configurations are determined by employing a direct parameter extraction methodology dedicated to III–V based HBTs. It is shown that the modeling of measured S-parameters can be improved in the millimeter-wave frequency range by augmenting the small-signal model with a description of AC current crowding. The extracted elements of the small-signal model structure are employed as a starting point for the extraction of a large-signal model. The developed large-signal model for the TS-HBTs accurately predicts the DC over temperature and small-signal performance over bias as well as the large-signal performance at millimeter-wave frequencies.


Sign in / Sign up

Export Citation Format

Share Document