scholarly journals Suitable Land-Use and Land-Cover Allocation Scenarios to Minimize Sediment and Nutrient Loads into Kwan Phayao, Upper Ing Watershed, Thailand

2021 ◽  
Vol 11 (21) ◽  
pp. 10430
Author(s):  
Jiraporn Kulsoontornrat ◽  
Suwit Ongsomwang

Human activity and land-use changes have affected the water quality of Kwan Phayao, Upper Ing watershed, due to the associated high sediment load and eutrophication. This study aims to identify suitable LULC allocation scenarios for minimizing sediment and nutrient export into the lake. For this purpose, the LULC status and change were first assessed, based on classified LULC data in 2009 and 2019 from Landsat images, using the SVM algorithm. Later, the land requirements of three scenarios between 2020 and 2029 were estimated, based on their characteristics, and applied to predict LULC change using the CLUE-S model. Then, actual LULC data in 2019 and predicted LULC data under three scenarios between 2020 and 2029 were used to estimate sediment and nutrient export using the SDR and NDR models. Finally, the ecosystem service change index identified a suitable LULC allocation for minimizing sediment or/and nutrient export. According to the results, LULC status and change indicated perennial trees and orchards, para rubber, and rangeland increased, while forest land and paddy fields decreased. The land requirements of the three scenarios provided reasonable results, as expected, particularly Scenario II, which adopts linear programming to calculate the land requirements for maximizing ecosystem service values. For sediment and nutrient export estimation under the predicted LULC for the three scenarios, Scenario II led to the lowest yield of sediment and nutrient exports, and provided the lowest average ESCI value among the three scenarios. Thus, the LULC allocation under Scenario II was chosen as suitable for minimizing sediment or/and nutrient export into Kwan Phayao. These results can serve as crucial information to minimize sediment and nutrient loads for land-use planners, land managers, and decision makers.

2020 ◽  
Vol 49 (1) ◽  
pp. 7-22
Author(s):  
LeRoy T. Hansen

Much of the research on ecosystem service values (ESVs) has limited applicability to USDA program benefit analyses, largely because the models/data/results (1) lack spatial breadth and hence cannot be applied in national analyses of USDA programs, and (2) do not link land use changes to the changes in ESs. This article provides an overview of a set of 15 ESVs related to agriculture's impacts on erosion in order to identify (1) weaknesses in methods, data, and assumptions that limit the quality of the ESVs and means of avoiding such weaknesses in future ESV development, and (2) approaches that might improve the reliability and spatial resolution of future ESV estimates.


2021 ◽  
Vol 41 (16) ◽  
Author(s):  
郭亚红,阿布都热合曼·哈力克,魏天宝,木卡达斯·阿不都热合 GUO Yahong

2019 ◽  
Vol 662 ◽  
pp. 254-265 ◽  
Author(s):  
Hong Hanh Nguyen ◽  
Friedrich Recknagel ◽  
Wayne Meyer ◽  
Jacqueline Frizenschaf ◽  
He Ying ◽  
...  

Water ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 1438 ◽  
Author(s):  
Luis Morales-Marín ◽  
Howard Wheater ◽  
Karl-Erich Lindenschmidt

Climate and land-use changes modify the physical functioning of river basins and, in particular, influence the transport of nutrients from land to water. In large-scale basins, where a variety of climates, topographies, soil types and land uses co-exist to form a highly heterogeneous environment, a more complex nutrient dynamic is imposed by climate and land-use changes. This is the case of the South Saskatchewan River (SSR) that, along with the North Saskatchewan River, forms one of the largest river systems in western Canada. The SPAtially Referenced Regression On Watershed (SPARROW) model is therefore implemented to assess water quality in the basin, in order to describe spatial and temporal patterns and identify those factors and processes that affect water quality. Forty-five climate and land-use change scenarios comprehended by five General Circulation Models (GCMs) and three Representative Concentration Pathways (RCPs) were incorporated into the model to explain how total nitrogen (TN) and total phosphorus (TP) export could vary across the basin in 30, 60 and 90 years from now. According to model results, annual averages of TN and TP export in the SSR are going to increase in the range 0.9–1.28 kg km − 2 year − 1 and 0.12–0.17 kg km − 2 year − 1 , respectively, by the end of the century, due to climate and land-use changes. Higher increases of TP compared to TN are expected since TP and TN are going to increase ∼36% and ∼21%, respectively, by the end of the century. This research will support management plans in order to mitigate nutrient export under future changes of climate and land use.


Water ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1653 ◽  
Author(s):  
Suxiao Li ◽  
Hong Yang ◽  
Junguo Liu ◽  
Guangchun Lei

In China, the regional development policy has been shifting from solely economic orientation to ecologically sound economic growth. Using the Beijing-Tianjin-Hebei (Jing-Jin-Ji) region as a case study, we evaluated the temporal variations in ecosystem service values (ESVs) associated with land use changes from 1990 to 2015. We analyzed the dynamic relations between ESVs and the economy (indicated by the gross domestic product, GDP) by introducing the elasticity indicator (EI), which reflects the growth synchronism between the two, and the ecosystem service load (ESL), which reflects the ecological efficiency of economic growth. The results showed that the land use changes in Jing-Jin-Ji have been characterized by decreases in water areas, cropland, and grassland and increases in woodland and built-up areas. The ESVs of woodland and water areas contributed to 80% of the total ESV of the region, and the total ESV increased by 13.87% as a result of an area increase in woodland (26.87%). The average EI of Jing-Jin-Ji improved from 0.028 to 0.293 over the study period, indicating that the growth of ESVs was being balanced with the growth in the GDP. The average ESL decreased by 1.24, suggesting a significant improvement in ecological efficiency per unit GDP. Within the Jing-Jin-Ji region, large disparities in EI and ESL were shown to exist among Beijing, Tianjin, and Hebei owing to their differences in ecological resources, GDP compositions, and development levels. The study highlights the needs to reinforce woodland and water conservation, adjust economic structures, and balance the intraregional development to achieve the ecological-economic integrity of the region.


Author(s):  
Stanley Atonya ◽  
Luke OLANG ◽  
Lewis Morara

A comprehensive undertanding of land-use/cover(LUC) change processes, their trends and future trajectories is essential for the development of sustainable land-use management plans. While contemporay tools can today be employed to monitor historical land-cover changes, prediction of future change trajectories in most rural agro-ecological landscapes remains a challenge. This study evaluated potential LUC changes in the transboundary Sio-Malaba-Malakisi River Basin of Kenya and Uganda for the period 2017-2047. The land use change drivers were obtained through a rigorous fieldwork procedure and the Logistic Regression Model (LGM) to establish key factors for the simulation. The CLUE-S model was subsequently adapted to explore future LUC change trajectories under different scenarios. The model was validated using historical land cover maps for the period of 2008 and 2017, producing overall accuracy result of 85.7% and a Kappa coefficient of 0.78. The spatial distribution of vegetation cover types could be explained partially by proximate factors like soil cation exchange capacity, soil organic carbon and soil pH. On the other hand, built-up areas were mainly influenced by population density. Under the afforestation scenario, areas under forest cover expanded further occupying 54.7% of the basin. Conversely, under the intense agriculture scenario, cropland and pasture cover types occupied 78% of the basin. However, in a scenario where natural forest and wetlands were protected, cropland and pasture only expanded by 74%. The study successfully outlined proximate land cover change drivers, including potential future changes and could be used to support the development of sustainable long-term transboundary land-use plans and policy.


Sign in / Sign up

Export Citation Format

Share Document