scholarly journals Research on the High Reliable Electromagnetic Stirring Power Supply

2021 ◽  
Vol 11 (21) ◽  
pp. 9874
Author(s):  
Xinxing Xiang ◽  
An Luo ◽  
Yan Li ◽  
Yandong Chen ◽  
Aiwu Li ◽  
...  

A reconstructed topology with fault diagnosis and fault-tolerant control strategy of the two-phase quadrature power supply of an electromagnetic stirring system are proposed to improve the reliability of the system. First, if the back stage inverter is faulty, the topology will be reconstructed after the diagnosed fault. The reconstructed topology with the fault diagnosis can be applied twice. Additionally, a fault pulse reset method is proposed to form a fault-tolerant control strategy, for which the high-reliability electromagnetic stirring power supply does not need to switch the control algorithm before and after the failure. The reliability of the electromagnetic stirring power supply is improved greatly. Finally, simulations and experiments verify the correctness of the electromagnetic stirring power supply fault diagnosis algorithm, reconstruction topology, and its fault-tolerant control strategy proposed in this paper.

Electronics ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1268
Author(s):  
Xi Zhang ◽  
Yiyun Zhao ◽  
Hui Lin ◽  
Saleem Riaz ◽  
Hassan Elahi

The Hall sensor is the most commonly used position sensor of the permanent magnet brushless direct current (PMBLDC) motor. Its failure may lead to a decrease in system reliability. Hence, this article proposes a novel methodology for the Hall sensors fault diagnosis and fault-tolerant control in PMBLDC motor drives. Initially, the Hall sensor faults are analyzed and classified into three fault types. Taking the Hall signal as the system state and the conducted MOSFETs as the system event, the extended finite state machine (EFSM) of the motor in operation is established. Meanwhile, a motor speed observer based on the super twisting algorithm (STA) is designed to obtain the speed signal of the proposed strategy. On this basis, a real-time Hall sensor fault diagnosis strategy is established by combining the EFSM and the STA speed observer. Moreover, this article proposes a Hall signal reconstruction strategy, which can generate compensated Hall signal to realize fault-tolerant control under single or double Hall sensor faults. Finally, theoretical analysis and experimental results validate the superior effectiveness of the proposed real-time fault diagnosis and fault-tolerant control strategy.


Energies ◽  
2019 ◽  
Vol 12 (18) ◽  
pp. 3462 ◽  
Author(s):  
Hanying Gao ◽  
Wen Zhang ◽  
Yu Wang ◽  
Zhuo Chen

Multi-phase motors have attracted increasing attention in fields seeking high reliability, such as electric vehicles, ships, and rail transit, as they exhibit advantages, such as high reliability and fault tolerance. In this study, we consider a 12-phase permanent magnet synchronous motor (PMSM). First, a mathematical model of the 12-phase PMSM in the static coordinate system is established and the model is simplified according to the constraint condition of neutral point isolation. Second, according to the principle of invariant magnetomotive force under normal and fault conditions, two optimal control strategies of winding current, i.e. maximum torque output (MTO) and minimum copper consumption (MCC), are proposed. For a single-phase open-circuit fault, two optimization methods are used to reconstruct the residual phase current, such that the motor can maintain normal torque output and exhibit lower torque ripple under the fault state. Finally, system simulation and experimental research are conducted; the results verify the accuracy and feasibility of the fault-tolerant control strategy of the 12-phase PMSM proposed in this paper.


Energies ◽  
2019 ◽  
Vol 12 (9) ◽  
pp. 1695 ◽  
Author(s):  
Qinyue Zhu ◽  
Zhaoyang Li ◽  
Xitang Tan ◽  
Dabo Xie ◽  
Wei Dai

Due to the use of multiple observers and controllers in multi-sensor fault-tolerant control of PMSM drive systems, the algorithm is complex and the system control performance is affected. In view of this, the paper studies multi-sensor fault diagnosis and active fault-tolerant control strategies based on a composite sliding mode observer. With the mathematical model of PMSM built, a design method of the composite sliding mode observer is proposed. A single observer is used to observe and estimate various state variables in the system in real time, which simplifies the implementation of observer-related algorithms. In order to improve the diagnostic accuracy of different types of sensors under different faults, a method for determining fault thresholds is proposed through global search for the maximum residual value. Based on this, a fault diagnosis and active fault-tolerant control strategy is proposed to realize fast switching and reconstruction of feedback signals of closed-loop control systems under different faults of multiple sensors, thus restoring the system performance. Finally, the effectiveness of the proposed algorithm and control strategy is verified by simulation experiments


Sign in / Sign up

Export Citation Format

Share Document