hall sensor
Recently Published Documents


TOTAL DOCUMENTS

440
(FIVE YEARS 79)

H-INDEX

22
(FIVE YEARS 4)

2022 ◽  
Vol 2022 ◽  
pp. 1-13
Author(s):  
Majid Nour ◽  
Nihat Daldal ◽  
Mehmet Fatih Kahraman ◽  
Hatem Sindi ◽  
Adi Alhudhaif ◽  
...  

A tilt sensor is a device used to measure the tilt on many axes of a reference point. Tilt sensors measure the bending position according to gravity and are used in many applications. Slope sensors allow easy detection of direction or slope in the air. These tilt gauges have become increasingly popular and are being adapted for a growing number of high-end applications. As an example of practical application, the tilt sensor provides valuable information about an aircraft’s vertical and horizontal tilt. This information also helps the pilot understand how to deal with obstacles during flight. In this paper, Hall-effect effective inclination and acceleration sensor design, which makes a real-time measurement, have been realized. 6 Hall-effect sensors with analog output (UGN-3503) have been used in the sensor structure. These sensors are placed in a machine, and the hall sensor outputs are continuously read according to the movement speed and direction of the sphere magnet placed in the assembly. Hall sensor outputs produce 0–5 Volt analog voltage according to the position of the magnet sphere to the sensor. It is clear that the sphere magnet moves according to the inclination of the mechanism when the mechanism is moved angularly, and the speed of movement from one point to the other changes according to the movement speed. Here, the sphere magnet moves between the hall sensors in the setup according to the ambient inclination and motion acceleration. Each sensor produces analog output values in the range of 0–5 V instantaneous according to the position of the spheroid. Generally defined, according to the sphere magnet position and movement speed, the data received from the hall sensors by the microcontroller have been sent to the computer or microcomputer unit as UART. In the next stage, the actual sensor has been removed. The angle and acceleration values have been continuously produced according to the mechanism’s movement and output as UART. Thanks to the fact that the magnet is not left idle and is fixed with springs, problems such as vibration noises and wrong movements and the magnet leaning to the very edge and being out of position even at a slight inclination are prevented. In addition, the Hall-effect sensor outputs are given to an artificial neural network (ANN), and the slope and acceleration information is estimated in the ANN by training with the data obtained from the real-time slope and accelerometer sensor.


Author(s):  
Haesung Jung ◽  
Jaesung Lee ◽  
Jinuk Park
Keyword(s):  

Sensors ◽  
2021 ◽  
Vol 21 (21) ◽  
pp. 7072
Author(s):  
Moo-Jung Seo ◽  
Jae-Chern Yoo

When grasping objects with uneven or varying shapes, accurate pressure measurement on robot fingers is critical for precise robotic gripping operations. However, measuring the pressure from the sides of the fingertips remains challenging owing to the poor omnidirectionality of the pressure sensor. In this study, we propose an omnidirectional sensitive pressure sensor using a cone-shaped magnet slider and Hall sensor embedded in a flexible elastomer, which guarantees taking pressure measurements from any side of the fingertip. The experimental results indicate that the proposed pressure sensor has a high sensitivity (61.34 mV/kPa) in a wide sensing range (4–90 kPa) without blind spots on the fingertip, which shows promising application prospects in robotics.


Electronics ◽  
2021 ◽  
Vol 10 (20) ◽  
pp. 2531
Author(s):  
Wei-Hsuan Chang ◽  
Rong-Terng Juang ◽  
Min-Hsiang Huang ◽  
Min-Feng Sung

Tire mileage and wear provide important information for vehicle applications. There are more and more studies discussing intelligent tires, but few focus on the role of tire mileage and wear. The conventional tire pressure monitoring system (TPMS) is one of the intelligent tire applications, but there has been no significant advancement in recent years in this regard. In order to increase the additional functions of intelligent tire applications, we propose a method that estimates the mileage and wear information of tires. The proposed method uses a three-axis sensor and a Hall sensor to implement the function. The proposed method also has a low power design to reduce the power consumption of the Hall sensor. The experimental results show the trend of tire wear status, rendering this method effective. This method also requires more accurate mileage information to support tire wear estimation. This experiment found that the correct rate of the proposed mileage estimation method is 99.4% and provides sufficient and correct mileage information for tire wear methods. If this method is used in autonomous vehicle applications, the autonomous control strategy algorithm has more conditions to plan the control strategy. The strategy system processes more meticulous control that increases the safety of autonomous vehicles.


Author(s):  
Sana Fatima Syeda ◽  
Marco Crescentini ◽  
Roberto Canegallo ◽  
Aldo Romani
Keyword(s):  

Sensors ◽  
2021 ◽  
Vol 21 (16) ◽  
pp. 5539
Author(s):  
Ali Azad ◽  
Jong-Jae Lee ◽  
Namgyu Kim

Hall-effect sensors are used to detect metal surface defects both experimentally and numerically. The gap between the specimen and the sensor, called the liftoff, is assumed to remain constant, while a slight misplacement of a sample may lead to incorrect measurements by the Hall-effect sensor. This paper proposes a numerical simulation method to mitigate the liftoff issue. Owing to the complexity of conducting precise finite-element analysis, rather than obtaining the induced current in the Hall sensor, only the magnetic flux leakage is obtained. Thus, to achieve a better approximation, a numerical method capable of obtaining the induced current density in the circumferential direction in terms of the inspection direction is also proposed. Signals of the conventional and proposed approximate numerical methods affected by the sensor liftoff variation were obtained and compared. For small liftoffs, both conventional and proposed numerical methods could identify notch defects, while as the liftoff increased, no defect could be identified using the conventional numerical method. Furthermore, experiments were performed using a variety of liftoff configurations. Based on the results, considering the threshold of the conventional numerical method, defects were detected for greater liftoffs, but misdetection did not occur.


Sign in / Sign up

Export Citation Format

Share Document