scholarly journals Battery Sizing for Mild P2 HEVs Considering the Battery Pack Thermal Limitations

2021 ◽  
Vol 12 (1) ◽  
pp. 226
Author(s):  
Gulnora Yakhshilikova ◽  
Ethelbert Ezemobi ◽  
Sanjarbek Ruzimov ◽  
Andrea Tonoli

Small capacity and passively cooled battery packs are widely used in mild hybrid electric vehicles (MHEV). In this regard, continuous usage of electric traction could cause thermal runaway of the battery, reducing its life and increasing the risk of fire incidence. Hence, thermal limitations on the battery could be implemented in a supervisory controller to avoid such risks. A vast literature on the topic shows that the problem of battery thermal runaway is solved by applying active cooling or by implementing penalty factors on electric energy utilization for large capacity battery packs. However, they do not address the problem in the case of passive cooled, small capacity battery packs. In this paper, an experimentally validated electro-thermal model of the battery pack is integrated with the hybrid electric vehicle simulator. A supervisory controller using the equivalent consumption minimization strategy with, and without, consideration of thermal limitations are discussed. The results of a simulation of an MHEV with a 0.9 kWh battery pack showed that the thermal limitations of the battery pack caused a 2–3% fuel consumption increase compared to the case without such limitations; however, the limitations led to battery temperatures as high as 180 °C. The same simulation showed that the adoption of a 1.8 kWh battery pack led to a fuel consumption reduction of 8–13% without thermal implications.

Author(s):  
Charbel R Ghanem ◽  
Elio N Gereige ◽  
Wissam S Bou Nader ◽  
Charbel J Mansour

There have been many studies conducted to replace the conventional internal combustion engine (ICE) with a more efficient engine, due to increasing regulations over vehicles’ emissions. Throughout the years, several external combustion engines were considered as alternatives to these traditional ICEs for their intrinsic benefits, among which are Stirling machines. These were formerly utilized in conventional powertrains; however, they were not implemented in hybrid vehicles. The purpose of this study is to investigate the possibility of implementing a Stirling engine in a series hybrid electric vehicle (SHEV) to substitute the ICE. Exergy analysis was conducted on a mathematical model, which was developed based on a real simple Stirling, to pinpoint the room for improvements. Then, based on this analysis, other configurations were retrieved to reduce exergy losses. Consequently, a Stirling-SHEV was modeled, to be integrated as auxiliary power unit (APU). Hereafter, through an exergo-technological detailed selection, the best configuration was found to be the Regenerative Reheat two stages serial Stirling (RRe-n2-S), offering the best efficiency and power combination. Then, this configuration was compared with the Regenerative Stirling (R-S) and the ICE in terms of fuel consumption, in the developed SHEV on the WLTC. This was performed using an Energy Management Strategy (EMS) consisting of a bi-level optimization technique, combining the Non-dominated Sorting Genetic Algorithm (NSGA) with the Dynamic Programming (DP). This arrangement is used to diminish the fuel consumption, while considering the reduction of the APU’s ON/OFF switching times, avoiding technical issues. Results prioritized the RRe-n2-S presenting 12.1% fuel savings compared to the ICE and 14.1% savings compared to the R-S.


Author(s):  
Hui Liu ◽  
Rui Liu ◽  
Riming Xu ◽  
Lijin Han ◽  
Shumin Ruan

Energy management strategies are critical for hybrid electric vehicles (HEVs) to improve fuel economy. To solve the dual-mode HEV energy management problem combined with switching schedule and power distribution, a hierarchical control strategy is proposed in this paper. The mode planning controller is twofold. First, the mode schedule is obtained according to the mode switch map and driving condition, then a switch hunting suppression algorithm is proposed to flatten the mode schedule through eliminating unnecessary switch. The proposed algorithm can reduce switch frequency while fuel consumption remains nearly unchanged. The power distribution controller receives the mode schedule and optimizes power distribution between the engine and battery based on the Radau pseudospectral knotting method (RPKM). Simulations are implemented to verify the effectiveness of the proposed hierarchical control strategy. For the mode planning controller, as the flattening threshold value increases, the fuel consumption remains nearly unchanged, however, the switch frequency decreases significantly. For the power distribution controller, the fuel consumption obtained by RPKM is 4.29% higher than that of DP, while the elapsed time is reduced by 92.53%.


Author(s):  
Tao Deng ◽  
Ke Zhao ◽  
Haoyuan Yu

In the process of sufficiently considering fuel economy of plug-in hybrid electric vehicle (PHEV), the working time of engine will be reduced accordingly. The increased frequency that the three-way catalytic converter (TWCC) works in abnormal operating temperature will lead to the increasing of emissions. This paper proposes the equivalent consumption minimization strategy (ECMS) to ensure the catalyst temperature of PHEV can work in highly efficient areas, and the influence of catalyst temperature on fuel economy and emissions is considered. The simulation results show that the fixed equivalent factor of ECMS has great limitations for the underutilized battery power and the poor fuel economy. In order to further reduce fuel consumption and keep the emission unchanged, an equivalent factor map based on initial state of charge (SOC) and vehicle mileage is established by the genetic algorithm. Furthermore, an Adaptive changing equivalent factor is achieved by using the following strategy of SOC trajectory. Ultimately, adaptive equivalent consumption minimization strategy (A-ECMS) considering catalyst temperature is proposed. The simulation results show that compared with ordinary ECMS, HC, CO, and NOX are reduced by 14.6%, 20.3%, and 25.8%, respectively, which effectively reduces emissions. But the fuel consumption is increased by only 2.3%. To show that the proposed method can be used in actual driving conditions, it is tested on the World Light Vehicle Test Procedure (WLTC).


2018 ◽  
Vol 9 (4) ◽  
pp. 45 ◽  
Author(s):  
Nicolas Sockeel ◽  
Jian Shi ◽  
Masood Shahverdi ◽  
Michael Mazzola

Developing an efficient online predictive modeling system (PMS) is a major issue in the field of electrified vehicles as it can help reduce fuel consumption, greenhouse gasses (GHG) emission, but also the aging of power-train components, such as the battery. For this manuscript, a model predictive control (MPC) has been considered as PMS. This control design has been defined as an optimization problem that uses the projected system behaviors over a finite prediction horizon to determine the optimal control solution for the current time instant. In this manuscript, the MPC controller intents to diminish simultaneously the battery aging and the equivalent fuel consumption. The main contribution of this manuscript is to evaluate numerically the impacts of the vehicle battery model on the MPC optimal control solution when the plug hybrid electric vehicle (PHEV) is in the battery charge sustaining mode. Results show that the higher fidelity model improves the capability of accurately predicting the battery aging.


Author(s):  
Wissam Bou Nader ◽  
Yuan Cheng ◽  
Emmanuel Nault ◽  
Alexandre Reine ◽  
Samer Wakim ◽  
...  

Gas turbine systems are among potential energy converters to substitute the internal combustion engine as auxiliary power unit in future series hybrid electric vehicle powertrains. Fuel consumption of these auxiliary power units in the series hybrid electric vehicle strongly relies on the energy converter efficiency and power-to-weight ratio as well as on the energy management strategy deployed on-board. This paper presents a technological analysis and investigates the potential of fuel consumption savings of a series hybrid electric vehicle using different gas turbine–system thermodynamic configurations. These include a simple gas turbine, a regenerative gas turbine, an intercooler regenerative gas turbine, and an intercooler regenerative reheat gas turbine. An energetic and technological analysis is conducted to identify the systems’ efficiency and power-to-weight ratio for different operating temperatures. A series hybrid electric vehicle model is developed and the different gas turbine–system configurations are integrated as auxiliary power units. A bi-level optimization method is proposed to optimize the powertrain. It consists of coupling the non-dominated sorting genetic algorithm to the dynamic programming to minimize the fuel consumption and the number of switching ON/OFF of the auxiliary power unit, which impacts its durability. Fuel consumption simulations are performed on the worldwide-harmonized light vehicles test cycle while considering the electric and thermal comfort vehicle energetic needs. Results show that the intercooler regenerative reheat gas turbine–auxiliary power unit presents an improved fuel consumption compared with the other investigated gas turbine systems and a good potential for implementation in series hybrid electric vehicles.


2018 ◽  
Vol 10 (9) ◽  
pp. 168781401879776 ◽  
Author(s):  
Jianjun Hu ◽  
Zhihua Hu ◽  
Xiyuan Niu ◽  
Qin Bai

To improve the fuel efficiency and battery life-span of plug-in hybrid electric vehicle, the energy management strategy considering battery life decay is proposed. This strategy is optimized by genetic algorithm, aiming to reduce the fuel consumption and battery life decay of plug-in hybrid electric vehicle. Besides, to acquire better drive-cycle adaptability, driving patterns are recognized with probabilistic neural network. The standard driving cycles are divided into urban congestion cycle, highway cycle, and urban suburban cycle; the optimized energy management strategies in three representative driving cycles are established; meanwhile, a comprehensive test driving cycle is constructed to verify the proposed strategies. The results show that adopting the optimized control strategies, fuel consumption, and battery’s life decay drop by 1.9% and 3.2%, respectively. While using the drive-cycle recognition, the features of different driving cycles can be identified, and based on it, the vehicle can choose appropriate control strategy in different driving conditions. In the comprehensive test driving cycle, after recognizing driving cycles, fuel consumption and battery’s life decay drop by 8.6% and 0.3%, respectively.


Author(s):  
Ronan Crosnier ◽  
Jean-Franc¸ois Hetet

This article presents a causal, forward looking approach for the hybrid electric vehicle where the typical performance engine map representation has been modified. The need for a more physical model of the power stroke process has been fulfilled with “the filling and emptying” method. The thermodynamic states in the intake and exhaust systems are calculated, while the in-cylinder process is still based on the engine fuel consumption map as a calibrated data. Comparisons with the conventional model are established, most important is the response of the engine torque under the load demand. This notion of an “available” torque is taken into account by the energy management strategy. Changes on the distribution of energy flow in order to meet the required torque at the wheel are observed and influence of this modelisation on the fuel consumption over various driving cycles is evaluated.


Sign in / Sign up

Export Citation Format

Share Document