scholarly journals Impact of the Temperature in the Evaluation of Battery Performances During Long-Term Cycling—Characterisation and Modelling

2018 ◽  
Vol 8 (8) ◽  
pp. 1364 ◽  
Author(s):  
Odile Capron ◽  
Joris Jaguemont ◽  
Rahul Gopalakrishnan ◽  
Peter Van den Bossche ◽  
Noshin Omar ◽  
...  

This paper presents the results regarding the thermal characterisation and modelling of high energy lithium-ion battery cells at both room (25 °C) and cycling (35 °C) temperatures. In this work two types of Nickel Manganese Cobalt (NMC) batteries are studied: a fresh (or uncycled) and an aged (or cycled) battery cells. The ageing of the studied NMC battery cells is achieved by means of accelerated ageing tests (i.e., repetition of numerous charge and discharge cycles) at 35 °C cycling temperature. Temperature at the surface of the battery cells is characterised, with a set of three discharge current rates 0.3C (i.e., 6 A), 1C (i.e., 20 A) and 2C (i.e., 40 A), and the evolutions at three different locations on the surface of the battery cells namely, at the top, in the center and at the bottom regions are measured. In addition, temperature and ageing dependent electrochemical-thermal modelling of the uncycled and cycled battery cells is also successfully accomplished in case of both room and cycling temperatures. Numerical simulations were carried out in case of high 2C constant current rate, and the assessment of the modelling accuracy by comparison of the predicted battery cells voltage and temperature with respect to the experimental data is further presented. With this paper, thermal performances of battery cells prior and after long-term cycling are evaluated at the cycling temperature, next to the ambient temperature. Hence, thermal characterisation and modelling results are more closely reflecting that encountered by the battery cells in real cycling conditions, so that their performances are believed in this way to be more objectively evaluated.

RSC Advances ◽  
2015 ◽  
Vol 5 (51) ◽  
pp. 41179-41185 ◽  
Author(s):  
Xiaolei Wang ◽  
Ge Li ◽  
Ricky Tjandra ◽  
Xingye Fan ◽  
Xingcheng Xiao ◽  
...  

Nanocomposites of Nb2O5 NCs in situ grown on CNTs are successfully developed with excellent rate capability, leading to the successful fabrication of asymmetric supercapacitors with high energy and power density and long-term cycling stability.


Ionics ◽  
2020 ◽  
Vol 27 (1) ◽  
pp. 1-11 ◽  
Author(s):  
Chao Chen ◽  
Quanqi Chen ◽  
Yanwei Li ◽  
Jianwen Yang ◽  
Bin Huang ◽  
...  

2019 ◽  
Vol 7 (23) ◽  
pp. 13922-13927 ◽  
Author(s):  
Bo Peng ◽  
Zhihao Sun ◽  
Shuhong Jiao ◽  
Jie Li ◽  
Gongrui Wang ◽  
...  

Sodium-ion batteries are one of the most promising candidates for large-scale energy storage systems due to the low cost of sodium source and their similar working principle to lithium-ion batteries.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Fuqiang An ◽  
Hongliang Zhao ◽  
Weinan Zhou ◽  
Yonghong Ma ◽  
Ping Li

Abstract Recently, high-energy density cells containing nickel-rich cathodes and silicon-based anodes have become a practical solution for increasing the driving range of electric vehicles. However, their long-term durability and storage performance is comparatively poor because of the unstable cathode-electrolyte-interphase (CEI) of the high-reactivity cathode and the continuous solid-electrolyte-interphase (SEI) growth. In this work, we study several electrolyte systems consisting of various additives, such as S-containing (1,3,2-dioxathiolane 2,2-dioxide (DTD), DTD + prop-1-ene-1,3-sultone (PES), methylene methanedisulfonate (MMDS)) and Si-containing (tris(trimethylsilyl) phosphate (TTSP) and tris(trimethylsilyl) borate (TMSB)) compounds, in comparison to the baseline electrolyte (BL = 1.0 M LiPF6 + 3:5:2 w-w:w EC: EMC: DEC + 0.5 wt% lithium difluoro(oxalato)borate (LiDFOB) + 2 wt% lithium bis(fluorosulfonyl)imide (LiFSI) + 2 wt% fluoroethylene carbonate (FEC) + 1 wt% 1,3-propane sultone (PS)). Generally, electrolytes with Si-containing additives, particularly BL + 0.5% TTSP, show a lower impedance increase in the full cell, better beginning-of-life (BOL) performance, less reversible capacity loss through long-term cycles and better storage at elevated temperatures than do electrolytes with S-containing additives. On the contrary, electrolytes with S-containing additives exhibit the advantage of low SEI impedance but yield a worse performance in the full cell than do those with Si-containing additives. The difference between two types of additives is attributed to the distinct function of the electrodes, which is characterized by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and X-ray photoelectron spectroscopy (XPS), which was performed on full cells and half cells with fresh and harvested electrodes.


Sign in / Sign up

Export Citation Format

Share Document