scholarly journals Experimental Evaluation and Prediction Algorithm Suggestion for Determining SOC of Lithium Polymer Battery in a Parallel Hybrid Electric Vehicle

2018 ◽  
Vol 8 (9) ◽  
pp. 1641 ◽  
Author(s):  
Insu Cho ◽  
Jongwon Bae ◽  
Junha Park ◽  
Jinwook Lee

The necessity of hybrid vehicles and electric vehicles is widely known for reasons such as fossil fuel depletion, climate change, emission norms mandated by regulations, and so on. Expansion of the hybrid vehicle market is a realistic way to respond to fuel efficiency regulations. Hybrid electric vehicles are continuously challenged to meet cross-attribute performance while minimizing energy usage and component cost in a highly competitive automotive market. Current optimization strategy for a parallel hybrid requires much computational time and relies heavily on the drive cycle to accurately represent driving conditions in the future. With increasing application of the lithium-ion battery technology in the automotive industry, development processes and validation methods for the battery management system (BMS) have attracted attention. The purpose of this study is to propose an algorithm to analyze charging characteristics and improve accuracy for determining state of charge (SOC), the equivalent of a fuel gauge for the battery pack, during the regenerative braking period of a TMED type parallel hybrid electric vehicle.

Author(s):  
Richik Ray

Abstract: In this paper, a MATLAB based Simulink model of a Series-Parallel Hybrid Electric Vehicle is presented. With the advent of Industry 4.0, the usage of Big Data, Machine Learning, Internet of Things, Artificial Intelligence, and similar groundbreaking domains of technology have usurped manual supervision in industrial as well as personal scenarios. This is aided by the drastic shift from orthodox and conventional Internal Combustion Engine based vehicles fuelled by fossil fuels in the order of petrol, diesel, etc., to fully functional electric vehicles developed by renowned companies, for example Tesla. Alongside 100% electric vehicles are hybrid vehicles that function on a system based on the integration of the conventional ICE and the modern Electric Propulsion System, which is referred to as the Hybrid Vehicle Drivetrain. Designs for modern HEVs and EVs are developed on computer software where simulations are run and all the essential parameters for the vehicle’s performance and sustainability are run and observed. This paper is articulated to discuss the parameters of a series-parallel HEV through an indepth MATLAB Simulink design, and further the observations are presented. Keywords: ICE (Internal Combustion Engine), HEV (Hybrid Electric Vehicle), Drivetrain, MATLAB, Simulink, PSD (Power Split Device), Vehicle Dynamics, SOC (State-of-Charge)


2011 ◽  
Vol 228-229 ◽  
pp. 951-956 ◽  
Author(s):  
Yun Bing Yan ◽  
Fu Wu Yan ◽  
Chang Qing Du

It is necessary for Parallel Hybrid Electric Vehicle (PHEV) to distribute energy between engine and motor and to control state-switch during work. Aimed at keeping the total torque unchanging under state-switch, the dynamic torque control algorithm is put forward, which can be expressed as motor torque compensation for engine after torque pre-distribution, engine speed regulation and dynamic engine torque estimation. Taking Matlab as the platform, the vehicle control simulation model is built, based on which the fundamental control algorithm is verified by simulation testing. The results demonstrate that the dynamic control algorithm can effectively dampen torque fluctuations and ensures power transfer smoothly under various state-switches.


Sign in / Sign up

Export Citation Format

Share Document