scholarly journals Analysis and Design of A PMQR-Type Repetitive Control Scheme for Grid-Connected H6 Inverters

2019 ◽  
Vol 9 (6) ◽  
pp. 1198
Author(s):  
Xiaohui Yang ◽  
Peiyun Liu ◽  
Shaoping Xu ◽  
Shichao Liu

There exist several challenges in the implementation of proportional multiple quasi-resonant (PMQR) control strategies in single-phase grid-connected H6 inverters, such as high computational costs and design complexity. To overcome these challenges, this paper proposes a proportional multiple quasi-resonant (PMQR)-type repetitive control (PMQR-type RC) scheme for single-phase grid-connected H6 inverters. In the control scheme, a repetitive controller and a proportional controller run in parallel. The repetitive controller is to improve the steady-state harmonics compensation ability, while the proportional controller can enhance the transient performance of the system. Both theoretical stability analysis and detailed design steps regarding the proposed control scheme are introduced. Finally, comparison results on a typical single-phase grid-connected H6 inverter with LC filter under a variety of control methods verify the capability of suppressing harmonics and the robust performance of the proposed control strategy against grid disturbances.

2013 ◽  
Vol 860-863 ◽  
pp. 2351-2355
Author(s):  
Jie Zhang ◽  
Hong Wei Ma

A PRE control scheme in single-phase inverter is adopted, namely connecting the proportional component with repetitive controller in parallel. This control scheme not only retains the characteristics of fast dynamic response from proportion link ,but also absorbs the advantages of no steady-state error in repetitive control .When the system is in stable operation condition, repetitive controller is used to resist periodic disturbance and thus improve the steady-state performance. Contrarily, the proportional component can feel mutation of input error and produce accommodation immediately to ensure the systems fast speed of response .The comprehensive theoretical analysis of this control strategy is given, and the system is designed in Matlab based on this theory, besides, the control scheme is achieved in the DSP platform by using digital control algorithm. Simulation and experimental results prove that the proposed scheme can achieve good dynamic and steady-state performance.


2013 ◽  
Vol 18 (4) ◽  
pp. 1161-1169
Author(s):  
André Filipe B. Oliveira ◽  
Sidelmo Magalhães Silva ◽  
Cláudio Henrique Gomes Santos ◽  
Braz de Jesus Cardoso Filho

2015 ◽  
Vol 37 ◽  
pp. 175 ◽  
Author(s):  
Ali Kalantar Zadeh ◽  
Leila Ilan Kashkooli ◽  
Seyed Alireza Mirzaee

In recent years, there has been a high demand for high-power inverters. Unlike a rectifier, an inverter with a high-power electronic oscillator is able to convert direct current (DC) into alternating current (AC) in different forms. Regarding this point, the current paper presents an analysis and design of fuzzy logic control (FLC) applied to an inverter of a single-phase voltage source using LC filter and voltage sensor. Also, three modes of inverter voltage non-linear control (back-stepping, sliding and fuzzy modes) have been simulated and compared. The results of simulation indicated that the suggested FLC could attenuate and reduce total harmonic distortion (THD) under linear loading conditions.


2021 ◽  
Vol 18 (1) ◽  
pp. 172988142199399
Author(s):  
Xiaoguang Li ◽  
Bi Zhang ◽  
Daohui Zhang ◽  
Xingang Zhao ◽  
Jianda Han

Shape memory alloy (SMA) has been utilized as the material of smart actuators due to the miniaturization and lightweight. However, the nonlinearity and hysteresis of SMA material seriously affect the precise control. In this article, a novel disturbance compensation-based adaptive control scheme is developed to improve the control performance of SMA actuator system. Firstly, the nominal model is constructed based on the physical process. Next, an estimator is developed to online update not only the unmeasured system states but also the total disturbance. Then, the novel adaptive controller, which is composed of the nominal control law and the compensation control law, is designed. Finally, the proposed scheme is evaluated in the SMA experimental setup. The comparison results have demonstrated that the proposed control method can track reference trajectory accurately, reject load variations and stochastic disturbances timely, and exhibit satisfactory robust stability. The proposed control scheme is system independent and has some potential in other types of SMA-actuated systems.


Sign in / Sign up

Export Citation Format

Share Document