Technique of Digital SPWM Inverter Based on PRE Control

2013 ◽  
Vol 860-863 ◽  
pp. 2351-2355
Author(s):  
Jie Zhang ◽  
Hong Wei Ma

A PRE control scheme in single-phase inverter is adopted, namely connecting the proportional component with repetitive controller in parallel. This control scheme not only retains the characteristics of fast dynamic response from proportion link ,but also absorbs the advantages of no steady-state error in repetitive control .When the system is in stable operation condition, repetitive controller is used to resist periodic disturbance and thus improve the steady-state performance. Contrarily, the proportional component can feel mutation of input error and produce accommodation immediately to ensure the systems fast speed of response .The comprehensive theoretical analysis of this control strategy is given, and the system is designed in Matlab based on this theory, besides, the control scheme is achieved in the DSP platform by using digital control algorithm. Simulation and experimental results prove that the proposed scheme can achieve good dynamic and steady-state performance.

Author(s):  
Wei Yao ◽  
Zhaoming Qian

In this paper, an improved load sharing control scheme is presented, which is able to improve the transient response and power sharing accuracy of parallel-connected inverters used in microgrid. It also shows how the improved droop method can be easily adapted to account for the operation of parallel-connected inverters, providing good performance under the variation and disturbance of loads, as well as achieving good steady-state objectives and transient performance. Two DSP-based single-phase Microgrid inverters are designed and implemented. Simulation and experimental results are all reported, confirming the validity of the proposed control technique.


2004 ◽  
Vol 40 (2) ◽  
pp. 516-525 ◽  
Author(s):  
T.J.E. Miller ◽  
M. Popescu ◽  
C. Cossar ◽  
M. McGilp ◽  
G. Strappazzon ◽  
...  

1986 ◽  
Vol 23 (2) ◽  
pp. 127-132
Author(s):  
T. F. Chan

An excitation control scheme for a two-axis excited synchronous motor is described, which, by the direct connection of the quadrature field winding and the armature circuit through a diode bridge rectifier, enables the motor power factor to be maintained at approximately unity, irrespective of load. The steady-state performance based on a simple phasor diagram is verified by experimental results.


2021 ◽  
Author(s):  
Jason Poon

We present a hybrid analog/digital computing circuit to solve a selective harmonic minimization problem. The approach leverages favorable attributes of digital and analog controllers to yield a fast and scalable optimization solver. A digital microcontroller programs the cost function and other user-defined inputs to the optimization. Voltages in the circuit represent switching angles in the optimization problem. In steady state, the voltages converge to Karush–Kuhn–Tucker (KKT) points of the problem. We present a specific realization of the computing circuit that solves for eight independent switching angles for a quarter-wave symmetric PWM driven two-level single-phase inverter. Seven undesired harmonics are minimized while retaining control over the modulation index. The proposed computing circuit is verified with simulations and a PCB hardware implementation. The experimental results demonstrate that the proposed circuit can converge to the optimal solution in less than 5.0 ms, which is substantially faster than existing methods and facilitates real-time implementation. Moreover, the steady-state power consumption of the PCB implementation is approximately 750 mW, which is also significantly lower than published methods for comparable applications. The computing circuit is utilized to generate the PWM for a 2 kW single-phase inverter, which validates its feasibility in practical applications.


Energies ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 3166
Author(s):  
Krzysztof Makowski ◽  
Aleksander Leicht

This paper deals with the computation of the performance characteristics of the single-phase self-excited induction generator by field–circuit method. It presents and compares previously unpublished results—self-excitation and no-load characteristics of the generator for different rotor speeds, and complete load steady-state performance characteristics for various types of the core materials. The discrepancies between the performance characteristics of the generator for the catalog’s magnetization curves of different types of electrical sheets and for an actual magnetic core of the generator for self-excitation transients and load steady-state are presented. The results may be useful for designing new constructions of single-phase self-excited induction generators.


2019 ◽  
Vol 9 (6) ◽  
pp. 1198
Author(s):  
Xiaohui Yang ◽  
Peiyun Liu ◽  
Shaoping Xu ◽  
Shichao Liu

There exist several challenges in the implementation of proportional multiple quasi-resonant (PMQR) control strategies in single-phase grid-connected H6 inverters, such as high computational costs and design complexity. To overcome these challenges, this paper proposes a proportional multiple quasi-resonant (PMQR)-type repetitive control (PMQR-type RC) scheme for single-phase grid-connected H6 inverters. In the control scheme, a repetitive controller and a proportional controller run in parallel. The repetitive controller is to improve the steady-state harmonics compensation ability, while the proportional controller can enhance the transient performance of the system. Both theoretical stability analysis and detailed design steps regarding the proposed control scheme are introduced. Finally, comparison results on a typical single-phase grid-connected H6 inverter with LC filter under a variety of control methods verify the capability of suppressing harmonics and the robust performance of the proposed control strategy against grid disturbances.


Sign in / Sign up

Export Citation Format

Share Document