scholarly journals Fracture Assessment of Weld Joints of High-Strength Steel in Pre-Strained Condition

2019 ◽  
Vol 9 (7) ◽  
pp. 1306
Author(s):  
Gyubaek An ◽  
Jeongung Park ◽  
Mituru Ohata ◽  
Fumiyoshi Minami

Unstable fractures tend to occur after ductile crack initiation or propagation. In most collapsed steel structures, a maximum 15% pre-strain was recorded, at the steel structural connections, during the great earthquake of 1995, in Japan. Almost-unstable fractures were observed in the beam-to-column connections, where geometrical discontinuities existed. Structural collapse and unstable failure occurred after large-scale plastic deformations. Ship structures can also suffer from unstable fractures in the welded joints. The fracture resistance of butt-welded joints subjected to tension in the pre-strained condition was estimated by considering the toughness deterioration, due to pre-strain and toughness correction for constraint loss in a tension specimen. The target specimen for this fracture assessment was a double-edged, through-thickness crack panel, with a crack in the weld joint (heat-affected zone (HAZ)). The critical fracture toughness value (crack tip opening displacement (CTOD)) of a large structure with pre-strain, which was applied to the HAZ region, was estimated from a small-scale, pre-stained, three-point bend specimen. Fracture toughness values, evaluated by a CTOD test, were recently mandated for shipbuilding steel plates. The critical fracture toughness value is a very useful parameter to evaluate the safety of huge ship structures.

2013 ◽  
Vol 2 (1) ◽  
pp. 88-101
Author(s):  
Thomas Ummenhofer ◽  
Philipp Weidner ◽  
Tim Zinke

Abstract Numerous studies at KIT prove that high frequency mechanical impact (HFMI) treatment is an efficient method for increasing the fatigue strength of welded steel structures. Within different research projects it was found that HFMI-methods can be used successfully for new and existing structures in order to extend the fatigue life. This paper gives an overview of the current status of existing steel bridges in Germany regarding aspects like bridge age distributions and traffic loads. Based on that overview welded joints susceptible to fatigue failure are identified. Using component-like small scale specimens, HFMI-methods were investigated within the objective of implementing an effective application for new and existing structures. Applying the fatigue test data observed, existing design proposals are evaluated and design recommendations for HFMI-treated joints are given. As a result of the research work, a transfer into practice has been realized and different applications are illustrated using the example of bridge constructions made of steel.


Author(s):  
Satoshi Igi ◽  
Mitsuru Ohata ◽  
Fumiyoshi Minami

Plastic constraint correction using the equivalent CTOD concept has been studied in the IST project. This project was carried out over a 3-year period with the foundation of METI in Japan, and the results were summarized in a draft standard, “Method of constraint loss correction of CTOD fracture toughness for fracture assessment of steel component.” Equivalent CTOD ratio β is proposed in terms of constraint loss correction between the fracture performance of steel structures and fracture toughness tests using the Weibull stress as the driving force of brittle fracture. This paper provides the application procedure of Equivalent CTOD ratio to the fracture assessment of structural components. Equivalent CTOD ratio was taken in the fracture assessment diagram, and discussed the applicability by comparison with large scale test result of structural component such as Edge Surface Crack Panel, Center Through-wall crack panel and so on.


2010 ◽  
Vol 132 (4) ◽  
Author(s):  
Satoshi Igi ◽  
Mitsuru Ohata ◽  
Fumiyoshi Minami

Plastic constraint correction using the equivalent CTOD concept has been studied in the International Standardization of Fracture Toughness Evaluation Procedure for Fracture Assessment of Steel Structures project. This project was carried out over a 3-year period with the foundation of the Japanese Ministry of Economy, Trade, and Industry, and the results were summarized in a draft standard “Method of constraint loss correction of CTOD fracture toughness for fracture assessment of steel component.” Equivalent CTOD ratio β is proposed in terms of the constraint loss correction between the fracture performance of steel structures and fracture toughness tests using the Weibull stress as the driving force of the brittle fracture. This paper provides the application procedure of equivalent CTOD ratio to the fracture assessment of structural components. Equivalent CTOD ratio was taken in the failure assessment diagram, and discussed the applicability by comparison with large scale test results of structural component such as edge surface crack panel, center through-wall crack panel, and other geometries.


2011 ◽  
Vol 480-481 ◽  
pp. 381-386
Author(s):  
Lei Chen ◽  
Yong Xiang Zhao ◽  
Guo Xiang Song

Fracture surface observations and statistical deriving are applied for investigating the random critical fracture toughness values of China grade B cast steel wheel. Results reveal that: the crack grows to show fabric like stripes along the growth direction with few of dimples. Cleavage flowers appear under higher magnification. Cracked structural damage process is verified with few of plastic dissipation. At the same time, code based evaluated results indicate that significant scatter exists for the toughness values. Lognormal modeling is constructed appropriately with a comprehensive statistical comparison method. It is verified that random characters and quantitative measurements have been well depicted for the present critical fracture toughness values.


2014 ◽  
Vol 633-634 ◽  
pp. 659-664 ◽  
Author(s):  
Zong Tao Fang ◽  
De Yu Tang ◽  
Yan Hua Hu ◽  
Hu Li Niu

This paper focus on fatigue problem of submarine pipelines, four points bending full scale fatigue experiment were conducted on X65 pipelines butt joints specimens, utilizing pipeline full scale fatigue test machine developed by CNPC. Meanwhile contrast test was also carried out on small specimens. The results show that the fatigue strength of full scale welded joints is lower than the small scale joints. Owing to having no regard for the influence of residual stress and size effect, the small test would provide dangerous results. The fatigue property of full scale welded joints only meets the requirement of DNV C203 W3 curve, and meets the needs of DNV C203 F3 curve basically while not meet BS 7608 F2 curve’s requirements which relatively demand higher. Weld toe and geometric discontinuous near weld root is the weak point for the whole welded joints.


Author(s):  
Dongil Kwon ◽  
Jong Hyoung Kim ◽  
Ohmin Kwon ◽  
Woojoo Kim ◽  
Sungki Choi ◽  
...  

The instrumented indentation technique (IIT) is a novel method for evaluating mechanical properties such as tensile properties, toughness and residual stress by analyzing the indentation load-depth curve measured during indentation. It can be applied directly on small-scale and localized sections in industrial structures and structural components since specimen preparation is very easy and the experimental procedure is nondestructive. We introduce the principles for measuring mechanical properties with IIT: tensile properties by using a representative stress and strain approach, residual stress by analyzing the stress-free and stressed-state indentation curves, and fracture toughness of metals based on a ductile or brittle model according to the fracture behavior of the material. The experimental results from IIT were verified by comparing results from conventional methods such as uniaxial tensile testing for tensile properties, mechanical saw-cutting and hole-drilling methods for residual stress, and CTOD test for fracture toughness.


Author(s):  
M Arita ◽  
Y Kayamori ◽  
Y Suzuki ◽  
K Hanya ◽  
T Suzuki ◽  
...  

2022 ◽  
Vol 21 (4) ◽  
pp. 308-311
Author(s):  
K. A. Molokov ◽  
V. V. Novikov

Introduction. Welded joints in large-sized metal structures (e.g., in the structures of ship hulls) subject to low-cycle fatigue are considered. The characteristic appearance of soft interlayers, which are significantly plastically deformed under working loads, was noted. Deformation of the metal structure with damage, especially in the form of cracks, reduces the strength and reliability of structural elements and joints. Pre-deformation negatively affects plasticity; therefore, much depends on the residual plasticity of the cracking material. At the same time, with a decrease in residual plasticity, such an important reliability indicator as the resistance of the material to crack propagation — the fracture toughness – decreases. The paper is devoted to the development of a model that includes analytical dependences for assessing the crack resistance of metal structures and their welded joints with soft interlayers according to the crack resistance limit for all crack sizes.Materials and Methods. The theory and methods of linear mechanics of materials destruction, structural-mechanical approach are used. The calculation results were analyzed and compared to the experimental data and other analytical solutions. The numerical experiment was performed for the ferrite-perlite steel grades of 10, 50, 22K, St3sp, etc., widely used in industry, as well as for alloy steels hardened to medium and high strength of 30KhGSA, 37KhN3A, etc. Results. Analytical dependences are obtained for calculating the relative crack resistance limit according to three main known mechanical characteristics of the state of the material of the soft interlayer of the welded joint.Discussion and Conclusions. The results obtained can be used to assess the crack resistance of pre-deformed structural elements and welded joints (including those with soft interlayers) operating under a transverse load. The results of experimental data and analytical calculations are shown in dimensionless form, which enables to obtain invariant results with respect to the fracture toughness limit.


Sign in / Sign up

Export Citation Format

Share Document