scholarly journals Evaluation of crack resistance of welded joints with soft interlayers

2022 ◽  
Vol 21 (4) ◽  
pp. 308-311
Author(s):  
K. A. Molokov ◽  
V. V. Novikov

Introduction. Welded joints in large-sized metal structures (e.g., in the structures of ship hulls) subject to low-cycle fatigue are considered. The characteristic appearance of soft interlayers, which are significantly plastically deformed under working loads, was noted. Deformation of the metal structure with damage, especially in the form of cracks, reduces the strength and reliability of structural elements and joints. Pre-deformation negatively affects plasticity; therefore, much depends on the residual plasticity of the cracking material. At the same time, with a decrease in residual plasticity, such an important reliability indicator as the resistance of the material to crack propagation — the fracture toughness – decreases. The paper is devoted to the development of a model that includes analytical dependences for assessing the crack resistance of metal structures and their welded joints with soft interlayers according to the crack resistance limit for all crack sizes.Materials and Methods. The theory and methods of linear mechanics of materials destruction, structural-mechanical approach are used. The calculation results were analyzed and compared to the experimental data and other analytical solutions. The numerical experiment was performed for the ferrite-perlite steel grades of 10, 50, 22K, St3sp, etc., widely used in industry, as well as for alloy steels hardened to medium and high strength of 30KhGSA, 37KhN3A, etc. Results. Analytical dependences are obtained for calculating the relative crack resistance limit according to three main known mechanical characteristics of the state of the material of the soft interlayer of the welded joint.Discussion and Conclusions. The results obtained can be used to assess the crack resistance of pre-deformed structural elements and welded joints (including those with soft interlayers) operating under a transverse load. The results of experimental data and analytical calculations are shown in dimensionless form, which enables to obtain invariant results with respect to the fracture toughness limit.

2020 ◽  
Vol 86 (12) ◽  
pp. 46-53
Author(s):  
M. M. Gadenin

The goal of the study is determination of the regularities of changes in cyclic strains and related deformation diagrams attributed to the existence of time dwells in the loading modes and imposition of additional variable stresses on them. Analysis of the obtained experimental data on the kinetics of cyclic elastoplastic deformation diagrams and their parameters revealed that in contrast to regular cyclic loading (equal in stresses), additional deformations of static and dynamic creep are developed. The results of the studys are especially relevant for assessing the cyclic strength of unique extremely loaded objects of technology, including nuclear power equipment, units of aviation and space systems, etc. The experiments were carried out on the samples of austenitic stainless steel under low-cycle loading and high temperatures of testing. Static and dynamic creep deformations arising under those loading conditions promote an increase in the range of cyclic plastic strain in each loading cycle and also stimulate an increase in the range of elastoplastic strain due to active cyclic deformation. At the same time the existence of dwells on extrema of stresses in cycles without imposition of additional variable stresses on them most strongly affects the growth of plastic strain ranges in cycles. Imposition of additional variable stresses on dwells also results in the development of creep strains, but their growth turns out to be somewhat less than in the presence of dwells without stresses imposed. The diagrams of cyclic deformation obtained in the experiments are approximated by power dependences, their kinetics being described in terms of the number of loading cycles using corresponding temperature-time functions. At the same time, it is shown that increase in the cyclic plastic deformation for cycles with dwells and imposition of additional variable stresses on them decreases low cycle fatigue life compared to regular loading without dwells at the same stress amplitudes, moreover, the higher the values of static and dynamic creep, the greater decrease in low-cycle fatigue life. This conclusion results from experimental data and analysis of conditions of damage accumulation for the considered forms of the loading cycle using the deformation criterion of reaching the limit state leading to fracture.


2018 ◽  
Vol 69 (9) ◽  
pp. 2563-2566
Author(s):  
Dan Dobrota

Mining equipment made of welded metal structures is strongly affected by the corrosion phenomenon due to the working conditions. Initial research has shown that the corrosion phenomenon is most pronounced in the area of cross-welded joints and welded T-shaped joints. In the researches, there was made a chemical analysis of the welded construction material used respectively of the new material and it was observed a reduction in carbon concentration in the material used, but also a substantial increase in the sulfur concentration compared to the new material. The pronounced corrosion of the metallic structure is influenced by the chemical composition change because the sulfur is a grafitizing and weakening element, and the decrease in carbon concentration causes a decrease in corrosion resistance. Also, the pronounced corrosion is due to the action of sulfurous acid (H2SO3) and hydrogen sulfide (H2S), elements that are present in the working environment of welded constructions. In order to achieve a reduction in the corrosion phenomenon, it is very important that the welded joints are made using the optimal parameters of the welding regime so as to obtain metallographic structure with finer granulations.


Author(s):  
V. I. Kostylev ◽  
B. Z. Margolin

The main features of shallow cracks fracture are considered, and a brief analysis of methods allowing to predict the temperature dependence of the fracture toughness KJC (T) for specimens with shallow cracks is given. These methods include DA-method, (JQ)-method, (J-T)-method, “local methods” with its multiparameter probabilistic approach, GP method uses power approach, and also two engineering methods – RMSC (Russian Method for Shallow Crack) and EMSC (European Method for Shallow Crack). On the basis of 13 sets of experimental data for national and foreign steels, a detailed verification and comparative analysis of these two engineering methods were carried out on the materials of the VVER and PWR nuclear reactor vessels considering the effect of shallow cracks.


2013 ◽  
Vol 671-674 ◽  
pp. 1761-1765
Author(s):  
Yong Liu ◽  
Chun Ming Song ◽  
Song Lin Yue

In order to get mechanical properties ,some RPC samples with 5% steel fiber are tested, many groups data were obtained such as compressive strength, shear strength and fracture toughness. And a group of tests on RPC with 5% steel-fiber under penetration were also conducted to validate the performance to impact. The penetration tests are carried out by the semi-AP projectiles with the diameter of 57 mm and earth penetrators with the diameter of 80 mm, and velocities of the two kinds of projectiles are 300~600 m/s and 800~900 m/s, respectively. By contrast between the experimental data and the calculation results of C30 reinforced concrete by using experiential formula under penetration, it shows that the resistance of steel-fiber RPC to penetration is 3 times as that of general C30 reinforced concrete.


2006 ◽  
Vol 326-328 ◽  
pp. 1075-1078
Author(s):  
Seok Jin Kwon ◽  
Jung Won Seo ◽  
Hyun Mu Hur ◽  
Sung Tae Kwon

Despite of improvement of wheel material for railway vehicle, the damages of railway wheel have been occurred in service running. Because of wheel damage with spalling, shelling and thermal crack, the maintenance cost for the railway wheel has increased. The railway wheel had standardized but the chemical composition, the mechanical property and the hardness with respect to railway wheel is merely established. In order to reduce wheel damage, it is necessary to reinforce the standard of railway wheel. In present study, the fracture mechanics characteristics of railway wheel such as low cycle fatigue, fracture toughness, impact energy depended on low temperature and so on have tested. The result shows that the standard of railway wheel has to supplement fracture toughness and impact energy depended on low temperature etc.


2021 ◽  
Vol 18 (3) ◽  
pp. 428-435
Author(s):  
Vladimir I. SMIRNOV ◽  
◽  
Tatiana A. KNOPOVA ◽  
Sergey S. MAYER ◽  
◽  
...  

Objective: Solving the problem of determining the conditions for the onset and development of unstable fracture, which is extremely important for the development of methods for calculating the limiting states of structural elements, improving the dynamic testing schemes of materials and classifying steels according to their ability to resist fracture. Methods: Analytical methods for assessing the limiting state of structural elements are used. Results: A brief overview of the available test methods for structural steels for dynamic strength and crack resistance is given. The experience accumulated by domestic and foreign practices in testing steels for strength and crack resistance under high-speed loading is analyzed. The disadvantages of the existing methods for assessing the indicators of dynamic strength and resistance to brittle fracture are indicated. Practical importance: It is shown that along with the traditional methods for assessing strength based on safety factors, it is necessary to develop and apply new methods for assessing the limiting state of structural elements, including by the criteria of crack resistance


2019 ◽  
Vol 206 ◽  
pp. 442-451 ◽  
Author(s):  
A.A. Stepashkin ◽  
D.Yu. Ozherelkov ◽  
Yu.B. Sazonov ◽  
A.A. Komissarov

Sign in / Sign up

Export Citation Format

Share Document