scholarly journals On Solving Two-Dimensional Inverse Heat Conduction Problems Using the Multiple Source Meshless Method

2019 ◽  
Vol 9 (13) ◽  
pp. 2629 ◽  
Author(s):  
Ku ◽  
Xiao ◽  
Huang ◽  
Yeih ◽  
Liu

In this article, a newly developed multiple-source meshless method (MSMM) capable of solving inverse heat conduction problems in two dimensions is presented. Evolved from the collocation Trefftz method (CTM), the MSMM approximates the solution by using many source points through the addition theorem such that the ill-posedness is greatly reduced. The MSMM has the same superiorities as the CTM, such as the boundary discretization only, and is advantageous for solving inverse problems. Several numerical examples are conducted to validate the accuracy of solving inverse heat conduction problems using boundary conditions with different levels of noise. Moreover, the domain decomposition method is adopted for problems in the doubly-connected domain. The results demonstrate that the proposed method may recover the unknown data with remarkably high accuracy, even though the over-specified boundary data are assigned a portion that is less than 1/10 of the overall domain boundary.

2019 ◽  
Vol 11 (7) ◽  
pp. 168781401986127 ◽  
Author(s):  
Cheng-Yu Ku ◽  
Chih-Yu Liu ◽  
Jing-En Xiao ◽  
Wei-Po Huang ◽  
Yan Su

In this article, a novel spacetime collocation Trefftz method for solving the inverse heat conduction problem is presented. This pioneering work is based on the spacetime collocation Trefftz method; the method operates by collocating the boundary points in the spacetime coordinate system. In the spacetime domain, the initial and boundary conditions are both regarded as boundary conditions on the spacetime domain boundary. We may therefore rewrite an initial value problem (such as a heat conduction problem) as a boundary value problem. Hence, the spacetime collocation Trefftz method is adopted to solve the inverse heat conduction problem by approximating numerical solutions using Trefftz base functions satisfying the governing equation. The validity of the proposed method is established for a number of test problems. We compared the accuracy of the proposed method with that of the Trefftz method based on exponential basis functions. Results demonstrate that the proposed method obtains highly accurate numerical solutions and that the boundary data on the inaccessible boundary can be recovered even if the accessible data are specified at only one-fourth of the overall spacetime boundary.


Mathematics ◽  
2019 ◽  
Vol 7 (11) ◽  
pp. 1114 ◽  
Author(s):  
Ku ◽  
Xiao ◽  
Yeih ◽  
Liu

This paper presents a study for solving the modified Helmholtz equation in layered materials using the multiple source meshfree approach (MSMA). The key idea of the MSMA starts with the method of fundamental solutions (MFS) as well as the collocation Trefftz method (CTM). The multiple source collocation scheme in the MSMA stems from the MFS and the basis functions are formulated using the CTM. The solution of the modified Helmholtz equation is therefore approximated by the superposition theorem using particular nonsingular functions by means of multiple sources located within the domain. To deal with the two-dimensional modified Helmholtz equation in layered materials, the domain decomposition method was adopted. Numerical examples were carried out to validate the method. The results illustrate that the MSMA is relatively simple because it avoids a complicated procedure for finding the appropriate position of the sources. Additionally, the MSMA for solving the modified Helmholtz equation is advantageous because the source points can be collocated on or within the domain boundary and the results are not sensitive to the location of source points. Finally, compared with other methods, highly accurate solutions can be obtained using the proposed method.


Author(s):  
Hans-Jürgen Reinhardt ◽  
Dinh Nho Hao

Abstract In this contribution we propose new numerical methods for solving inverse heat conduction problems. The methods are constructed by considering the desired heat flux at the boundary as piecewise constant (in time) and then deriving an explicit expression for the solution of the equation for a stationary point of the minimizing functional. In a very special case the well-known Beck method is obtained. For the time being, numerical tests could not be included in this contribution but will be presented in a forthcoming paper.


Sign in / Sign up

Export Citation Format

Share Document