scholarly journals Smart Experience in Fashion Design: A Speculative Analysis of Smart Material Systems Applications

Arts ◽  
2018 ◽  
Vol 8 (1) ◽  
pp. 4
Author(s):  
Marinella Ferrara

During the last decade, smart materials and systems have increasingly impacted several niches, including ‘one-off/limited edition experimental fashion’. As the traditional boundaries between what is art and what was not supposed to be art are now turning into osmotic membranes, we will speculatively focus on how ‘smart material systems’ are highly contributing to outline a new creative landscape full of interesting and compelling issues. Introducing three different sub-niches of experimental fashion—multi-sensory dresses, empathic dresses, and bio-smart dresses—this article outlines the emergence of a new smart design scenario. Then, we critically discuss some of the implications of the developing research in terms of design thinking and design aesthetics. This paper aims to contribute to the topic of next design scenario, demonstrating how design research is increasingly affecting the extension of human perception, emotions, and the concept of ‘almost-living’ entities, projecting towards the redefinition of relationships with materials and objects.

Author(s):  
Marinella Ferrara

During the last decade, smart materials have increasingly impacted on several niches, among which that of one-off/limited edition experimental fashion. Thanks to their performativity, due to the implementation of Smart Materials Systems, they have reached indeed catwalks as well as museums and galleries. As boundaries between what-is-art and what traditionally was not supposed to be art are now turning into osmotic membranes, zooming on how smart materials are highly contributing to outline the new creative landscape can provide with interesting and compelling issues. Introducing three different areas of experimental fashion, named Multi-sensory dresses, Empathic dresses, and Bio-smart dresses and accessories, respectively covering the world of in-Lab experiments and design collaborations in relation to the application of advanced smart materials systems, the article discuss some of the implications in term of Design Thinking and Design Aesthetics.


Author(s):  
Marinella Ferrara

During the last decade, smart materials have increasingly impacted on several niches, among which that of one-off/limited edition experimental fashion. Thanks to their performativity, due to the implementation of Smart Materials Systems, they have reached indeed catwalks as well as museums and galleries. As boundaries between what-is-art and what traditionally was not supposed to be art are now turning into osmotic membranes, zooming on how smart materials are highly contributing to outline the new creative landscape can provide with interesting and compelling issues. Introducing three different areas of experimental fashion, named Multi-sensory dresses, Empathic dresses, and Bio-smart dresses and accessories, respectively covering the world of in-Lab experiments and design collaborations in relation to the application of advanced smart materials systems, the article discuss some of the implications in term of Design Thinking and Design Aesthetics.


2012 ◽  
Vol 80 (1) ◽  
Author(s):  
Amir Shojaei ◽  
Guoqiang Li ◽  
George Z. Voyiadjis

The cold-drawn, programmed shape memory polymer (SMP) fibers show excellent stress recovery property, which promotes their application as mechanical actuators in smart material systems. A full understanding of the thermomechanical-damage responses of these fibers is crucial to minimize the trial-and-error manufacturing processes of these material systems. In this work, a multiscale viscoplastic-viscodamage theory is developed to predict the cyclic mechanical responses of SMP fibers. The proposed viscoplastic theory is based on the governing relations for each of the individual microconstituents and establishes the microscale state of the stress and strain in each of the subphases. These microscale fields are then averaged through the micromechanics framework to demonstrate the macroscale constitutive mechanical behavior. The cyclic loss in the functionality of the SMP fibers is interpreted as the damage process herein, and this cyclic loss of stress recovery property is calibrated to identify the state of the damage. The continuum damage mechanics (CDM) together with a thermodynamic consistent viscodamage theory is incorporated to simulate the damage process. The developed coupled viscoplastic-viscodamage theory provides an excellent correlation between the experimental and simulation results. The cyclic loading-damage analysis in this work relies on the underlying physical facts and accounts for the microstructural changes in each of the micro constituents. The established framework provides a well-structured method to capture the cyclic responses of the SMP fibers, which is of utmost importance for designing the SMP fiber-based smart material systems.


2006 ◽  
Author(s):  
Vijay K. Varadan ◽  
K. J. Vinoy ◽  
S. Gopalakrishnan

2017 ◽  
Vol 8 (1) ◽  
pp. 12-23 ◽  
Author(s):  
Hanbin Liu ◽  
Shaojian Lin ◽  
Yujun Feng ◽  
Patrick Theato

This paper reviews the chemical fundamentals of CO2-responsive polymers as well as the latest reported “smart” material systems switched by CO2.


Sign in / Sign up

Export Citation Format

Share Document